Please wait a minute...
金融研究  2023, Vol. 519 Issue (9): 58-75    
  本期目录 | 过刊浏览 | 高级检索 |
极端天气风险与宏观经济波动——基于网络关联与空间溢出双重视角
李力, 吴施美, 陈贞竹
南开大学金融学院,天津 300353;
湖南大学经济与贸易学院,湖南长沙 410006;
国家外汇管理局中央外汇业务中心,北京 100033
Extreme Weather Risks and Macroeconomic Fluctuations: A Dual Perspective Based on Network Connectedness and Spatial Spillovers
LI Li, WU Shimei, CHEN Zhenzhu
School of Finance, Nankai University;
School of Economics and Trade, Hunan University;
Investment Center, State Administration of Foreign Exchange
下载:  PDF (2396KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在全球气候变暖背景下,极端天气的广发频发对实体经济高质量发展和金融市场平稳运行的影响日益显著。本文首先构建了我国省级层面的极端天气指数,进一步基于网络关联和空间溢出双重视角,探究了极端天气风险对我国宏观经济波动的具体影响。本文研究发现:(1)我国省级极端天气风险的网络关联性明显上升,这对于我国宏观经济波动具有不利影响;(2)各省极端天气风险的增加会通过空间溢出效应影响其他省份的实体经济,一方面通过需求渠道降低其他省份的消费、投资等实体经济活动,另一方面通过金融渠道导致其他省份的银行信贷出现下降;(3)省级极端天气风险的空间溢出效应具有区域异质性。随着各省之间市场分割程度的削弱,极端天气风险的空间溢出效应会显著增强。本文的研究对于提升我国气候变化的应对能力,加快构建全国统一大市场下的极端天气风险跨省联防联控机制具有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李力
吴施美
陈贞竹
关键词:  极端天气风险  宏观经济波动  网络关联  空间溢出    
Summary:  In the context of global warming, the impact of frequent occurrences of extreme weather on the high-quality development of the real economy and the steady operation of the financial market has increasingly intensified. With the orderly construction of a unified national market and the increasingly close interregional circulation of commodities and factors, an in-depth investigation of the economic impact of extreme weather events has become a critical issue for China. This research has reference value for China in terms of assisting it to cope with downward economic pressure, prevent the adverse spatial spillover effects caused by extreme weather risks, enhance its ability to tackle climate change, and accelerate the construction of an interprovincial joint prevention and control mechanism for extreme weather risks under the national unified market.
Although numerous studies examine the specific impacts of climate change-related risks on China's real economy and financial institutions, the literature mainly focuses on the long-term impacts of climate risks, with little research on the short-term effects on business cycle fluctuations. This paper contributes to the literature in three aspects. First, it innovatively combines network topology analysis with extreme weather risks and portrays the network connectedness that characterizes provincial level extreme weather risks in China. Second, it comprehensively explores the impacts of provincial level extreme weather risks on China's macroeconomic fluctuations from the dual perspectives of network connectedness and spatial spillovers, including both aggregate level and provincial level analyses. Third, this paper discusses demand and the financial channels of the effects from the perspectives of both the real economy and the financial system, and conducts regional heterogeneity analyses.
Following the construction of the Actuaries Climate Index developed by actuarial associations in the United States and Canada, we construct a province level and national level extreme weather index (EWI) in China using the Chinese surface climate daily data (V3.0) published by the China Meteorological Data Service Center. Regarding network correlation, this paper estimates a vector autoregressive model based on elastic network technology to measure the degree of network connectedness of the EWI in each province, and analyzes the specific impact of this degree of connectedness on the aggregate level macroeconomic fluctuations. Next, this paper uses the spatial Durbin model to examine the spatial spillover effects between extreme weather risks in each province, with a focus on meso level analysis.
The findings of this paper are as follows: (1) the provincial level network connectedness of the EWI has increased significantly since 2012; (2) the enhancement of the network connectedness of the interprovincial EWI will compress consumption and investment and hence reduce aggregate demand, increase financial stress, and generate a persistent decline of aggregate output; (3) the increase of the EWI in one province will also affect the real economy of other provinces through spatial spillover effects, repressing real economic activities such as consumption and investment in other provinces through the demand channel, as well as leading to a decline in other provinces' bank credit through the financial channel. We find that there is regional heterogeneity in the spatial spillover effects of the EWI. With the weakening of interprovincial market segmentation, the spatial spillover effects of the EWI will be significantly enhanced.
The conclusions of this paper elucidate the need and directions for the development of extreme weather adaptation policies and preventive measures in various regions. First, China should strengthen its prevention of extreme weather risks; increase its monitoring and early warning systems for extreme weather events; avoid continuous negative impacts of extreme weather risks on the real economy; fully consider extreme weather risks in urban planning, construction, and operation; and accelerate the construction of climate change-adaptive cities to enhance the resilience of the urban economic system. Second, China should pay attention to the impact of extreme weather risks on its financial system, guard against the rise of financial risk and financial pressure caused by extreme weather shocks, and actively prevent the “ratchet effect” of extreme weather risk caused by an insufficiency of domestic demand and the volatility of the financial market. Third, China should promote and enable interprovincial and interregional joint actions to deal with extreme weather risks and thus effectively avoid the interregional contagion of extreme weather risks and to enable provinces and regions to jointly curb the adverse spatial spillover effects caused by extreme weather risks on real economic activities.
Keywords:  Extreme Weather Risks    Macroeconomic Fluctuations    Network Connectedness    Spatial Spillovers
JEL分类号:  E32   E44   Q54  
基金资助: * 本文感谢国家自然科学基金项目(72103209,72103061,72373074)、湖南省自然科学基金项目(2023JJ20019)和中央高校基本科研业务费专项资金(998-63233178)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  吴施美,经济学博士,副教授,湖南大学经济与贸易学院,E-mail:wushimei@hnu.edu.cn.   
作者简介:  李 力,经济学博士,副教授,南开大学金融学院,E-mail:nklili0903c@163.com.
陈贞竹,经济学博士,经理,国家外汇管理局中央外汇业务中心,E-mail:chenzhenzhu@pku.edu.cn.
引用本文:    
李力, 吴施美, 陈贞竹. 极端天气风险与宏观经济波动——基于网络关联与空间溢出双重视角[J]. 金融研究, 2023, 519(9): 58-75.
LI Li, WU Shimei, CHEN Zhenzhu. Extreme Weather Risks and Macroeconomic Fluctuations: A Dual Perspective Based on Network Connectedness and Spatial Spillovers. Journal of Financial Research, 2023, 519(9): 58-75.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V519/I9/58
[1]丁宇刚和孙祁祥,2022,《气候风险对中国农业经济发展的影响——异质性及机制分析》,《金融研究》第9期,第111~131页。
[2]金刚和沈坤荣,2022,《气候变化与线下服务业消费:以电影行业为例》,《世界经济》第9期,第152~178页。
[3]刘波、王修华和李明贤,2021,《气候变化冲击下的涉农信用风险——基于2010—2019年256家农村金融机构的实证研究》,《金融研究》第12期,第96~115页。
[4]毛其淋和盛斌,2012,《对外经济开放,区域市场整合与全要素生产率》,《经济学(季刊)》第1期,第181~210页。
[5]潘敏、刘红艳和程子帅,2022,《极端气候对商业银行风险承担的影响——来自中国地方性商业银行的经验证据》,《金融研究》第10期,第39~57页。
[6]王博和徐飘洋,2021,《碳定价、双重金融摩擦与“双支柱”调控》,《金融研究》第12期,第57~74页。
[7]王遥和王文蔚,2021,《环境灾害冲击对银行违约率的影响效应研究:理论与实证分析》,《金融研究》第12期,第38~56页。
[8]吴施美、郑新业和安子栋,2022,《气候治理与短期经济波动:气候变化奥肯定律》,《经济学动态》第4期,第49~66页。
[9]中国气象局气候变化中心,2021,《中国气候变化蓝皮书(2021)》,科学出版社,2021年8月第一版。
[10]Bachmann, R. and E. R. Sims, 2012, “Confidence and the Transmission of Government Spending Shocks”, Journal of Monetary Economics, 59(3), pp.235~249.
[11]Burke, M., S. M. Hsiang and E. Miguel, 2015, “Global Non-Linear Effect of Temperature on Economic Production”, Nature, 527, pp.235~239.
[12]Cai, X., Y. Lu and J. Wang, 2018, “The Impact of Temperature on Manufacturing Worker Productivity: Evidence from Personnel Data”, Journal of Comparative Economics, 46(4), pp.889~905.
[13]Cashin P., K. Mohaddes and M. Raissi, 2017, “Fair Weather or Foul? The Macroeconomic Effects of El Niño”, Journal of International Economics, 106, pp.37~54.
[14]Chen, S., X. Chen and J. Xu, 2016, “Impacts of Climate Change on Agriculture: Evidence from China”, Journal of Environmental Economics and Management, 76, pp. 105~124.
[15]Chen, S. and B. Gong, 2021, “Response and Adaptation of Agriculture to Climate Change: Evidence from China”, Journal of Development Economics, 148, 102557.
[16]Dell, M., B. F. Jones and B. A. Olken, 2012, “Temperature Shocks and Economic Growth: Evidence from the Last Half Century”, American Economic Journal: Macroeconomics, 4(3), pp.66~95.
[17]Dell, M., B. F. Jones and B. A. Olken, 2014, “What Do We Learn from the Weather? The New Climate-Economy Literature”, Journal of Economic Literature, 52(3), pp.740~798.
[18]Diebold, F. X. and K. Yilmaz, 2012, “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers”, International Journal of Forecasting, 28(1), pp.57~66.
[19]Diebold, F. X. and K. Yilmaz, 2014, “On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms”, Journal of Econometrics, 182(1), pp.119~134.
[20]Elliott, R. J., E. Strobl and P. Sun, 2015, “The Local Impact of Typhoons on Economic Activity in China: A View from Outer Space”, Journal of Urban Economics, 88, pp.50~66.
[21]Hong, H., G. A. Karolyi and J. A. Scheinkman, 2020, “Climate Finance”, The Review of Financial Studies, 33(3), pp.1011~1023.
[22]Kalkuhl, M. and L. Wenz, 2020, “The Impact of Climate Conditions on Economic Production. Evidence from a Global Panel of Regions”, Journal of Environmental Economics and Management, 103, 102360.
[23]LeSage, J. and R. K. Pace, 2009, Introduction to Spatial Econometrics, New York: Chapman and Hall/CRC.
[24]Newell, R. G.,B.C.Prest S.E.Sexton,2021, “The GDP-Temperature Relationship: Implications for Climate Change Damages”, Journal of Environmental Economics and Management, 108, 102445.
[25]Park, C. Y. and R. V. Mercado Jr., 2014, “Determinants of Financial Stress in Emerging Market Economies”, Journal of Banking & Finance, 45, pp.199~224.
[26]Parsley, D. C. and S. J. Wei, 2001, “Limiting Currency Volatility to Stimulate Goods Market Integration: A Price-Based Approach”, NBER Working Paper, No. W8468.
[27]Pesaran, H. H. and Y. Shin, 1998, “Generalized Impulse Response Analysis in Linear Multivariate Models”, Economics Letters, 58(1), pp.17~29.
[28]Schlenker, W. and M. Auffhammer, 2018, “The Cost of a Warming Climate”, Nature, 557, pp.498~499.
[29]Somanathan, E., R. Somanathan, A. Sudarshan and M. Tewari, 2021, “The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing”, Journal of Political Economy, 129(6), pp.1797~1827.
[30]Strobl, E., 2011, “The Economic Growth Impact of Hurricanes: Evidence from US Coastal Counties”, Review of Economics and Statistics, 93(2), pp.575~589.
[1] 庄子罐, 韩恺明, 刘鼎铭, 王熙. 资产价格、预期冲击与中国宏观经济波动[J]. 金融研究, 2023, 518(8): 1-18.
[2] 王博, 赵森杨, 罗荣华, 彭龙. 地方政府债务、空间溢出效应与区域经济增长[J]. 金融研究, 2022, 506(8): 18-37.
[3] 吴立元, 赵扶扬, 王忏, 龚六堂. 美国货币政策溢出效应、中国资产价格波动与资本账户管理[J]. 金融研究, 2021, 493(7): 77-94.
[4] 梅冬州, 温兴春, 王思卿. 房价调控、地方政府债务与宏观经济波动[J]. 金融研究, 2021, 487(1): 31-50.
[5] 庄子罐, 贾红静, 刘鼎铭. 居民风险偏好与中国货币政策的宏观经济效应——基于DSGE模型的数量分析[J]. 金融研究, 2020, 483(9): 40-58.
[6] 张可. 区域一体化、环境污染与社会福利[J]. 金融研究, 2020, 486(12): 114-131.
[7] 闫先东, 张鹏辉. 土地价格、土地财政与宏观经济波动[J]. 金融研究, 2019, 471(9): 1-18.
[8] 张翔, 刘璐, 李伦一. 国际大宗商品市场金融化与中国宏观经济波动[J]. 金融研究, 2017, 439(1): 35-51.
[1] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[2] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
[3] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[4] 严成樑. 延迟退休、财政支出结构调整与养老金替代率[J]. 金融研究, 2017, 447(9): 51 -66 .
[5] 杨晓兰, 金雪军. 我国股票市场熔断机制的磁力效应:基于自然实验的证据[J]. 金融研究, 2017, 447(9): 161 -177 .
[6] 杜兴强, 谭雪. 国际化董事会、分析师关注与现金股利分配[J]. 金融研究, 2017, 446(8): 192 -206 .
[7] 彭方平, 欧阳志刚, 展凯, 刘良. 我国落入债务陷阱了吗?——理论模型与经验证据[J]. 金融研究, 2017, 440(2): 70 -83 .
[8] 冯根福, 刘虹, 冯照桢, 温军. 股票流动性会促进我国企业技术创新吗?[J]. 金融研究, 2017, 441(3): 192 -206 .
[9] 罗煜, 王芳, 陈熙. 制度质量和国际金融机构如何影响PPP项目的成效——基于“一带一路”46国经验数据的研究[J]. 金融研究, 2017, 442(4): 61 -77 .
[10] 徐浩萍, 施海娜, 金彧昉. 新股定价基础:历史业绩还是技术创新?——基于中国创业板市场的研究[J]. 金融研究, 2017, 442(4): 191 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1