Please wait a minute...
金融研究  2024, Vol. 534 Issue (12): 97-115    
  本期目录 | 过刊浏览 | 高级检索 |
绿色产业的信贷成本匹配与资源配置效率:宏观效应与微观机制
王韧, 段义诚, 何强
首都经济贸易大学金融学院,北京 100026;
南京大学商学院,江苏南京 210008;
国家统计局统计科学研究所,北京 100142
Credit Cost Matching and Resource Allocation Efficiency in the Green Industry: Macro Effects and Micro Mechanisms
WANG Ren, DUAN Yicheng, HE Qiang
School of Finance, Capital University of Economics and Business;
Business School, Nanjing University;
Institute of Statistical Science, National Bureau of Statistics
下载:  PDF (1131KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 信贷成本变化会引致绿色产业内部的资源流动,进而对绿色产业的市场竞争结构和资源配置效率施加影响。本文基于2014—2020年中国多层次资本市场的绿色企业样本,通过微观企业的TFP水平与区域维度的绿色产业资源配置效率测算,同时使用企业信贷获取成本与微观效率表现的耦合关系来刻画信贷成本匹配程度,系统梳理了绿色产业的信贷成本匹配对于资源配置效率的影响效应和传导机制。研究发现:(1)中国绿色产业的TFP水平提升的同时伴随着资源配置效率的下降,其中低效率企业进步缓慢、退出困难和持续涌入充当着绿色产业资源有效配置的主要障碍;(2)改善信贷成本匹配度有助于推动绿色产业的资源配置效率改善,并能够与总量型绿色信贷政策形成明显的协同效应;(3)信贷成本匹配度提升主要通过倒逼低效率企业效率提升、限制低效率企业涌入市场、引导劳动要素投入优化来改善绿色产业的市场竞争环境和产业组织结构,进而推动资源配置效率改善。由此,推动绿色产业高质量发展需要充分关注资源配置的有效性,同时充分发挥信贷价格工具的引导功能,强化市场竞争并抬高进入门槛,并致力于与总量型的绿色信贷政策协同互动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王韧
段义诚
何强
关键词:  全要素生产率  资源配置效率  信贷成本匹配度  绿色信贷政策    
Summary:  The development of the green industry has a significant “positive external” effect. Under China's financial system, enterprises rely on indirect financing as their source of capital. Therefore, strengthening credit support for the green industry not only helps promote the scale expansion of the green industry but also accelerate the technological progress of the green industry; increasing use of credit price tools helps guide the flow of resources within the green industry, which in turn affects the competitive structure of the market and the efficiency of resource allocation in the green industry. Throughout the existing studies, although they generally emphasize the importance of bank credit support for the development of green industries, they are less likely to explore the impact of the price-matching characteristics of external credit support on the internal resource allocation efficiency of green industries from a structural perspective. Based on the samples of green enterprises in China's capital market from 2014 to 2020, by measuring the total factor productivity of micro-green enterprises and observing the resource allocation efficiency of green industries with the help of the discrete characteristics of the efficiency distribution of micro-enterprises, and by measuring the credit cost matching characteristics around the coupling relationship between credit cost and micro efficiency, we systematically sort out the impact of credit cost matching on the resource allocation efficiency of green industries in terms of their credit cost matching effect and transmission mechanism.
This paper finds that: (1) the improvement of TFP in China's green industry is accompanied by a decline of resource allocation efficiency, in which the slow progress of inefficient enterprises, difficult in being squeezed out of the market and the continuous influx of inefficient enterprises act as the main obstacles to achieve the effective allocation of resources within the green industry; (2) the improvement of the price matching degree of credit helps promote the improvement of the resource allocation efficiency of the green industry and form obvious synergies with the aggregate type of green credit support; (3) the credit cost matching mainly improves the market competitive environment and industrial structure of green industry through three different transmission paths, such as forcing inefficient enterprises to improve their efficiency, restricting the influx of inefficient enterprises into the market, and guiding the optimization of labor factor inputs.
Compared with existing literature, the marginal contributions of this study lies in the following aspects Firstly, we extract a broader sample of green enterprises in China, and through the multi-dimensional efficiency measurement and comparison on this basis, we show the multi-dimensional efficiency evolution characteristics of China's green industry under the regional spatial perspective more comprehensively. Secondly, based on the cost of credit access and TFP indicators of green enterprises, combined with China's unique administrative system structure and the “performance championship” factor, we constructed the cost matching index of credit support for the green industry by measuring the micro-coupling state of credit cost and enterprise efficiency in a specific region. Thirdly, by screening the actual impact of the price matching characteristics of credit support on the resource allocation efficiency of regional green industry, combined with the aggregate adjustment effect of green credit policy and the micro conduction mechanism under the SCP paradigm, the interactive logic of credit price structural adjustment and the resource allocation efficiency of green industry is interpreted from multiple perspectives, and targeted policy recommendations are provided to strengthen the credit support of green industry.
Comprehensively, this paper also puts forward the following policy recommendations for promoting the high-quality development of China's green industry: Firstly, the support for the development of the green industry should not only focus on the TFP enhancement from the perspective of input-output, but also focus on the improvement of resource allocation efficiency within the green industry.Secondly, it should be committed to constructing a market-based competition mechanism for the survival of the winners and the fittest within the green industry,accelerate the orderly exit of inefficient green enterprises, and at the same time raise the market entry threshold of the green industry, to ultimately create an orderly and effective market competition environment. Thirdly, we should make every effort to build a high-quality green credit service system with a matching structure, incorporate the technical level and production capacity of enterprises into the scope of credit approval by financial institutions, and strengthen the credit support for high-quality green enterprises; at the same time, we should strengthen the supporting combination of aggregate green credit policy and structural credit price tools, focus on the structural matching between the price of credit supply and the efficiency of micro-enterprises, and strive to promote the optimization of the structure of credit supply, to give full play to the guiding role of the credit price tools in improving the efficiency of resource allocation for green industries.
Keywords:  Total Factor Productivity    Resource Allocation Efficiency    Credit Cost Matching Degree    Green Credit Policy
JEL分类号:  G21   G38   L12  
基金资助: * 感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  段义诚,博士研究生,南京大学商学院,E-mail:dyc23745@mail.ustc.edu.cn.   
作者简介:  王 韧,经济学博士,教授,首都经济贸易大学金融学院,E-mail:1981wangren@163.com.
何强,统计学博士,研究员,国家统计局统计科学研究所,E-mail:heqiang_1122@163.com.
引用本文:    
王韧, 段义诚, 何强. 绿色产业的信贷成本匹配与资源配置效率:宏观效应与微观机制[J]. 金融研究, 2024, 534(12): 97-115.
WANG Ren, DUAN Yicheng, HE Qiang. Credit Cost Matching and Resource Allocation Efficiency in the Green Industry: Macro Effects and Micro Mechanisms. Journal of Financial Research, 2024, 534(12): 97-115.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V534/I12/97
[1]陈创练、庄泽海和林玉婷,2016,《金融发展对工业行业资本配置效率的影响》,《中国工业经济》第11期,第22~38页。
[2]陈彦斌、陈小亮和陈伟泽,2014,《利率管制与总需求结构失衡》,《经济研究》第2期,第18~31页。
[3]程大中、李韬和姜彬,2015,《要素价格差异与要素跨国流向:对HOV模型的检验》,《世界经济》第3期,第95~122页。
[4]龚关和胡关亮,2013,《中国制造业资源配置效率与全要素生产率》,《经济研究》第4期,第4~15,29页。
[5]郭晔和房芳,2021,《新型货币政策担保品框架的绿色效应》,《金融研究》第1期,第91~110页。
[6]何凌云、梁宵、杨晓蕾和章奇,2019,《绿色信贷能促进环保企业技术创新吗》,《金融经济学研究》第5期,第109~121页。
[7]黄建欢、吕海龙和王良健,2014,《金融发展影响区域绿色发展的机理——基于生态效率和空间计量的研究》,《地理研究》第3期,第532~545页。
[8]李俊成、彭俞超和王文蔚,2023,《绿色信贷政策能否促进绿色企业发展?——基于风险承担的视角》,《金融研究》第3期,第112~130页。
[9]李蕾蕾和盛丹,2018,《地方环境立法与中国制造业的行业资源配置效率优化》,《中国工业经济》第7期,第136~154页。
[10]刘成杰和范闯,2015,《中国资本配置效率行业差异及其影响因素研究——基于金融危机前后数据的实证》,《中央财经大学学报》第12期,第123~129页。
[11]舒利敏、廖菁华和谢振,2023,《绿色信贷政策与企业绿色创新——基于绿色产业视角的经验证据》,《金融经济学研究》第2期,第144~160页。
[12]苏冬蔚和连莉莉,2018,《绿色信贷是否影响重污染企业的投融资行为?》,《金融研究》第12期,第123~137页。
[13]孙正和陈旭东,2018,《“营改增”是否提升了服务业资本配置效率?》,《中国软科学》第11期,第17~30页。
[14]王兵、戴敏和武文杰,2017,《环保基地政策提高了企业环境绩效吗?——来自东莞市企业微观面板数据的证据》,《金融研究》第4期,第143~160页。
[15]王馨和王营,2021,《绿色信贷政策增进绿色创新研究》,《管理世界》第6期,第173~188,11页。
[16]王遥、潘冬阳、彭俞超和梁希,2019,《基于DSGE模型的绿色信贷激励政策研究》,《金融研究》第11期,第1~18页。
[17]文书洋、刘浩和王慧,2022,《绿色金融、绿色创新与经济高质量发展》,《金融研究》第8期,第1~17页。
[18]谢婷婷和刘锦华,2019,《绿色信贷如何影响中国绿色经济增长?》,《中国人口·资源与环境》第9期,第83~90页。
[19]张华,2016,《地区间环境规制的策略互动研究——对环境规制非完全执行普遍性的解释》,《中国工业经济》第7期,第74~90页。
[20]张可、汪东芳和周海燕,2016,《地区间环保投入与污染排放的内生策略互动》,《中国工业经济》第2期,第68~82页。
[21]张小可和葛晶,2021,《绿色金融政策的双重资源配置优化效应研究》,《产业经济研究》第6期,第15~28页。
[22]周泽将、高雅萍和张世国,2020,《营商环境影响企业信贷成本吗》,《财贸经济》第12期,第117~131页。
[23]Hsieh, C. T., and P. Klenow, 2009, “Misallocation and Manufacturing TFP in China and India”, Quarterly Journal of Economics, 124(4): 1403~1448.
[24]Luo, C., S. Fan, and Q. Zhang, 2017, “Investigating the Influence of Green Credit on Operational Efficiency and Financial Performance Based on Hybrid Econometric Models”, International Journal of Financial Studies, 5(4): 27.
[25]Stiglitz J E, Weiss A, 1981, “Credit Rationing in Markets with Imperfect Information”, The American Economic Review, 71(3): 393~410.
[26]Wurgler J., 2000, “Financial Markets and the Allocation of Capital”, Journal of Financial Economics, 58(1~2): 187~214.
[27]Yao, Y., and M. Zhang, 2015, “Subnational Leaders and Economic Growth: Evidence from Chinese Cities”, Journal of Economic Growth, 20(4): 405~436.
[1] 刘凤良, 陈彦龙. 环境政策组合、信贷歧视与全要素生产率——基于企业治污投入的视角[J]. 金融研究, 2024, 524(2): 94-112.
[2] 成程, 田轩, 徐照宜. 供应链金融与企业效率升级 ——来自上市公司公告与地方政策文件的双重证据[J]. 金融研究, 2023, 516(6): 132-149.
[3] 余泳泽, 庄海涛, 伏雨. 社会失信与全要素生产率——基于交易成本视角的研究[J]. 金融研究, 2023, 515(5): 58-76.
[4] 刘哲希, 王兆瑞, 吴韬. 老龄化与“高TFP贡献率、低增长”问题[J]. 金融研究, 2023, 522(12): 1-19.
[5] 马理, 张人中, 马威, 牛慕鸿. 能源结构有序调整与绿色信贷政策调控[J]. 金融研究, 2023, 511(1): 94-112.
[6] 徐尚昆, 王璐, 杨汝岱. 地权稳定与农业生产[J]. 金融研究, 2022, 504(6): 133-152.
[7] 文竹, 金涛. 关于中国经济增长模式的一个解释框架——基于“土地财政”的演进分析[J]. 金融研究, 2022, 502(4): 1-17.
[8] 倪红福. 扭曲因子、进口中间品价格与全要素生产率——基于非竞争型投入产出网络结构一般均衡模型事后核算方法[J]. 金融研究, 2022, 500(2): 21-39.
[9] 丁杰, 李仲飞, 黄金波. 绿色信贷政策能够促进企业绿色创新吗?——基于政策效应分化的视角[J]. 金融研究, 2022, 510(12): 55-73.
[10] 朱宁, 刘伟其, 于之倩, 王兵. 中国银行业结构性全要素生产率增长研究[J]. 金融研究, 2021, 493(7): 1-18.
[11] 公衍磊, 邓辛, 杨金强. 全要素生产率、产能利用率与企业金融资源配置——基于中国上市企业委托贷款公告数据的经验分析[J]. 金融研究, 2020, 481(7): 57-74.
[12] 李广子, 刘力. 产业政策与信贷资金配置效率[J]. 金融研究, 2020, 479(5): 114-131.
[13] 丁宁, 任亦侬, 左颖. 绿色信贷政策得不偿失还是得偿所愿?——基于资源配置视角的PSM-DID成本效率分析[J]. 金融研究, 2020, 478(4): 112-130.
[14] 余泳泽, 王岳龙, 李启航. 财政自主权、财政支出结构与全要素生产率——来自230个地级市的检验[J]. 金融研究, 2020, 475(1): 28-46.
[15] 徐忠, 贾彦东. 中国潜在产出的综合测算及其政策含义[J]. 金融研究, 2019, 465(3): 1-17.
[1] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[2] 张浩, 易行健, 周聪. 房产价值变动、城镇居民消费与财富效应异质性——来自微观家庭调查数据的分析[J]. 金融研究, 2017, 446(8): 50 -66 .
[3] 孔东民, 项君怡, 代昀昊. 中小企业过桥贷款投融资的财务效应——来自我国中小企业版上市公司的证据[J]. 金融研究, 2017, 441(3): 145 -158 .
[4] 李志冰, 杨光艺, 冯永昌, 景亮. Fama-French五因子模型在中国股票市场的实证检验[J]. 金融研究, 2017, 444(6): 191 -206 .
[5] 贾璐熙, 朱叶, 陈达飞. 公司名称、投资者认知与公司价值——基于公司名称评价指标体系的行为金融学研究[J]. 金融研究, 2016, 431(5): 173 -190 .
[6] 潘敏, 魏海瑞. 提升监管强度具有风险抑制效应吗?——来自中国银行业的经验证据[J]. 金融研究, 2015, 426(12): 64 -80 .
[7] 耿志祥, 孙祁祥. 人口老龄化、延迟退休与二次人口红利[J]. 金融研究, 2017, 439(1): 52 -68 .
[8] 周开国, 邢子煜, 彭诗渊. 中国股市行业风险与宏观经济之间的风险传导机制[J]. 金融研究, 2020, 486(12): 151 -168 .
[9] 尹力博, 魏冬. 劳动杠杆的定价效力:来自中国A股市场的证据[J]. 金融研究, 2022, 500(2): 117 -134 .
[10] 李政, 梁琪, 方意. 中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化[J]. 金融研究, 2019, 464(2): 40 -58 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1