Please wait a minute...
金融研究  2020, Vol. 486 Issue (12): 151-168    
  本期目录 | 过刊浏览 | 高级检索 |
中国股市行业风险与宏观经济之间的风险传导机制
周开国, 邢子煜, 彭诗渊
中山大学岭南学院,广东广州 510275;
中山大学新华学院经济与贸易学院,广东广州 510520;
交通银行股份有限公司广东省分行,广东广州 510000
The Contagion Mechanism between Industrial Risk and the Macro Economy in China
ZHOU Kaiguo, XING Ziyu, PENG Shiyuan
Lingnan College, Sun Yat-Sen University;
School of Economics and Trade,Xin hua College of Sun Yat-sen University;
Guangdong Branch, Bank of Communication
下载:  PDF (1546KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文采用行业收益率溢出指数度量股市行业风险,并进一步研究中国股市行业风险与宏观经济的相互影响,同时引入股息率和利率两个中介渠道深入挖掘其传导机制。我们运用GARCH-in-Mean模型对股市行业风险和宏观经济变量之间的一阶矩和二阶矩相互关系同时进行分析,结果发现,股市行业风险和宏观经济变量之间水平值和波动率都存在双向影响,对外溢出效应较大的行业起主导作用。此外,股市行业风险对宏观经济变量的影响方面,股息率和利率均起到中介渠道作用;宏观经济变量对股市行业风险的影响方面,只是利率起到中介渠道作用。股市行业风险与宏观经济的传导效应在不同时期差异显著。本文研究结论有助于深刻理解金融与实体经济之间的风险传导机制,对防范系统性风险、防止金融和实体经济“风险共振”以及提升金融服务实体经济能力等具有参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周开国
邢子煜
彭诗渊
关键词:  溢出效应  GARCH-in-Mean  行业风险  宏观经济    
Summary:  The role of finance is central to the modern economy, as the interaction between finance and the real economy is prominent. The healthy development of China's economy requires allowing finance to serve the real economy. The prevention of “risk resonance” between China's financial market and its real economy will ensure that the co-development of finance and the real economy is benign. This study on the interaction between financial risk and the real economy will demonstrate how to prevent “risk resonance” and improve the financial services to the real economy. This paper uses a method proposed by Diebold and Yilmaz (2009) to calculate the industry yield spillover index of the stock market. which is called “Industry Risk of the Stock Market.” It analyzes the linkage relationship and risk spillover effect between various industries in the stock market. The dividend yield and interest rate are applied as intermediary channels. This allows us to use the GARCH-in-mean model to analyze the transmission mechanism of the first and second moments between the industry risk of the stock market and macroeconomic variables. The model measures the interaction between the stock market and the macro economy from a new perspective. It also describes the two-way transmission of industry risk between the stock market and macroeconomic fluctuations, filling a gap in the literature by demonstrating how stock market fluctuations affect macroeconomic performance. This paper studies the risk spillover effect among various industries in the stock market. A total of 3,284 stock samples are selected from China's Shanghai and Shenzhen A-share markets. A total of 18 industries are selected, following the industry classification standards of the China Securities Regulatory Commission in 2012. The sample period is from May 10, 1996 to December 31, 2019. Economic indicators such as consumer price index, broad money supply, export value, fixed asset investment completion, unemployment rate, and RMB exchange rate against the US dollar are used as representatives of the macroeconomic performance. All data are obtained from the WIND database. The main findings are as follows. First, the results of examining the spillover effect of the return of the stock market industry in China show that compared with the consolidation cycle, the stock market has a relatively large industry-wide yield spillover index during the rising cycle and falling cycle. The manufacturing industry, as the foundation of national economy, is at the forefront of all industries in terms of its total outgoing spillover effect, while the financial industry as a whole is the recipient of incoming spillover. Second, there is a significant two-way impact between the industrial risk of the stock market and the macro economy, whether at the mean level or the volatility level. Macroeconomic fluctuations will lead to stronger correlations between various sectors in the stock market, and the yields of various industries can rise and fall at the same time. The fluctuation of the industrial risk of the stock market generally inhibits the growth of the macro economy. In terms of the impact of industrial risks on macroeconomic variables, both dividend rate and interest rate are intermediary channels. Conversely, regarding the impact of macroeconomic variables on industrial risks, only interest rate is an intermediary channel. In addition, during the period of external shocks, represented by the international financial crisis in 2008, the industrial risks and macroeconomic variables do not show a significant spillover relationship. This study's findings offer some policy recommendations. Firstly, regulators can use quantitative indicators such as the industrial spillover index to measure the industrial risk of the stock market. Secondly, the effective prevention of two-way contagion between financial risks and fluctuations of the real economy and of “risk resonance” between the financial market and real economy requires stronger macro-prudential supervision. Accurately identifying the source of risks is helpful to regulators who will be able to implement better risk supervision measures after accurately identifying the source of the risks. By analyzing the characteristics of the industrial risk of stock market, we can accurately identify its source and accurately implement measures to prevent and control financial risks at the relevant industry level. Third, regulators should consider the intermediary objectives of financial risk supervision to improve the financial market and real economy's ability to supervise and prevent risk resonance. The regulators should not ignore the other aspect when unilaterally implementing policies from the perspective of the financial market or real economy.
Keywords:  Spillover Effects    GARCH-in-Mean    Industrial Risk    Macro Economy
JEL分类号:  G01   G10   E02  
基金资助: * 本文感谢国家社会科学基金重大项目(20&ZD103)、广东省基础研究及应用研究重大项目(2017WZDXM037)、2016年广东省特色重点学科“公共管理”建设项目,以及中山大学2019年“三大”建设文科重要成果培育专项资助项目的资助。感谢匿名审稿人的宝贵意见,文责自负。
作者简介:  周开国,金融学博士,教授,中山大学岭南学院,中山大学新华学院经济与贸易学院,E-mail:zhoukg@mail.sysu.edu.cn.
邢子煜,金融学博士研究生,中山大学岭南学院,E-mail:xingzy5@mail2.sysu.edu.cn.
彭诗渊,金融硕士,交通银行股份有限公司广东省分行,E-mail:peng_shiyuan@bankcomm.com.
引用本文:    
周开国, 邢子煜, 彭诗渊. 中国股市行业风险与宏观经济之间的风险传导机制[J]. 金融研究, 2020, 486(12): 151-168.
ZHOU Kaiguo, XING Ziyu, PENG Shiyuan. The Contagion Mechanism between Industrial Risk and the Macro Economy in China. Journal of Financial Research, 2020, 486(12): 151-168.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2020/V486/I12/151
[1] 宫晓莉和熊熊,2020,《波动溢出网络视角的金融风险传染研究》,《金融研究》第5期,第39~58页。
[2] 郭庆旺和贾俊雪,2004,《中国经济波动的解释:投资冲击与全要素生产率冲击》,《管理世界》第7期,第22~28页。
[3] 梁琪、李政和郝项超,2015,《中国股票市场国际化研究:基于信息溢出的视角》,《经济研究》第4期,第150~164页。
[4] 梁琪和滕建州,2005,《股票市场、银行与经济增长:中国的实证分析》,《金融研究》第10期,第9~19页。
[5] 刘少波和丁菊红,2005,《我国股市与宏观经济相关关系的“三阶段演进路径”分析》,《金融研究》第7期,第57~66页。
[6] 马骏、施康、王红林和王立升,2016,《利率传导机制的动态研究》,《金融研究》第1期,第31~49页。
[7] 沈传河和王向荣,2015,《金融市场联动形态结构的非线性分析》,《管理科学学报》第2期,第66~75页。
[8] 鄢莉莉和王一鸣,2012,《金融发展 、金融市场冲击与经济波动——基于动态随机一般均衡模型的分析》,《金融研究》第12期,第82~95页。
[9] 赵华和王杰,2018,《基于混频数据的实体经济与金融市场时变溢出效应研究》,《统计研究》第7期,第49~61页。
[10] 郑挺国和刘堂勇,2018,《股市波动溢出效应及其影响因素分析》,《经济学(季刊)》第2期,第669~692页。
[11] 杨子晖、陈雨恬和谢锐楷,2018,《我国金融机构系统性金融风险度量与跨部门风险溢出效应研究》,《金融研究》第10期,第19~37页。
[12] 杨子晖、陈雨恬和张平淼,2020,《重大突发公共事件下的宏观经济冲击、金融风险传导与治理应对》,《管理世界》第5期,第13~35页。
[13] Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi. 2012. “The Network Origins of Aggregate Fluctuations”, Econometrica, 80(5):1977~2016.
[14] Bansal, R., D. Kiku, I. Shaliastovich, and A. Yaron. 2014. “Volatility, the Macroeconomy and Asset Prices”, Journal of Finance, 69(6):2471~2511.
[15] Barrot, J. N. and J. Sauvagnat. 2016. “Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks”, The Quarterly Journal of Economics, 131(3):1543~1592.
[16] Beirne, J., G. M. Caporale, M. Schulzeghatts, and N. Spagnolo. 2013. “Volatility Spillovers and Contagion from Mature to Emerging Stock Markets”, Review of International Economics, 21(5):1060~1075.
[17] Bollerslev, T. 1990. “Modelling the Coherence in Short-Run Nominal Exchange Rates: A Multivariate Generalized Arch Model”, Review of Economics and Statistics, 72(3):498~505.
[18] Chen, A. Y. 2017. “External Habit in a Production Economy: A Model of Asset Prices and Consumption Volatility Risk”, Review of Financial Studies, 30(8):2890~2932.
[19] Chen, P., L. Karabarbounis, and B. Neiman. 2017. “The Global Rise of Corporate Saving”, Journal of Monetary Economics, 89:1~19.
[20] Chiu, C. W., D. F. Harris, E. Stoja, and M. Chin. 2018. “Financial Market Volatility, Macroeconomic Fundamentals and Investor Sentiment”, Journal of Banking and Finance, 92(7):130~145.
[21] Chiu, C. W., J. I. Peña and C. W. Wang. 2015. “Industry Characteristics and Financial Risk Contagion”, Journal of Banking and Finance, 50(1):411~427.
[22] Cohen, L. and A. Frazzini. 2008. “Economic Links and Predictable Returns”, The Journal of Finance, 63(4):1977~2011.
[23] Diebold, F. X. and K. Yilmaz. 2009. “Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets”, Economic Journal,119(534):158~171.
[24] Diebold, F. X. and K. Yilmaz. 2012. “Better to Give Than to Receive: Predictive Directional Measurement of Volatility Spillovers”, International Journal of Forecasting, 28(1):57~66.
[25] Engle, R. 2002. “Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models ”, Journal of Business and Economic Statistics, 20(3):339~350.
[26] Engle R. F., E. Ghysels, and B. Sohn. 2013. “Stock Market Volatility and Macroeconomic Fundamentals”, The Review of Economics and Statistics, 95(3):776~797.
[27] Engle, R. F., D. M. Lilien and R. P. Robins. 1987. “Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model”, Econometrica, 55(2):391~407.
[28] Fama, E. F. and K. R. French. 1988. “Dividend Yields and Expected Stock Returns”, Journal of Financial Economics, 22(1):3~25.
[29] Giglio, S., B. Kelly and S. Pruitt. 2016. “Systemic Risk and the Macroeconomy: An Empirical Evaluation”, Journal of Financial Economics, 119(3):457~471.
[30] Gonzalez M., J. Nave, and G. Rubio. 2018. “Macroeconomic Determinants of Stock Market Betas”, Journal of Empirical Finance, 45:26~44.
[31] Jensen, M. C. 1986. “ Agency Costs of Free CashFlow, Corporate Finance, and Takeovers”, American Economic Review,76(2),:323~329.
[32] Lobo, B. J. 2000. “Asymmetric Effects of Interest Rate Changes on Stock Prices”, The Financial Review, 35(3):125~144.
[33] Turnovsky, S. 1990. “The Effects of Taxes and Dividend Policy on Capital Accumulation and Macroeconomic Behavior”, Journal of Economic Dynamics and Control, 14:491~521.
[1] 庄子罐, 贾红静, 刘鼎铭. 居民风险偏好与中国货币政策的宏观经济效应——基于DSGE模型的数量分析[J]. 金融研究, 2020, 483(9): 40-58.
[2] 刘建丰, 于雪, 彭俞超, 许志伟. 房产税对宏观经济的影响效应研究[J]. 金融研究, 2020, 482(8): 34-53.
[3] 张智富, 郭云喜, 张朝洋. 宏观审慎政策协调能否抑制国际性银行危机传染?——基于跨境金融关联视角的实证研究[J]. 金融研究, 2020, 481(7): 21-37.
[4] 张礼卿, 钟茜. 全球金融周期、美国货币政策与“三元悖论”[J]. 金融研究, 2020, 476(2): 15-33.
[5] 闫先东, 张鹏辉. 土地价格、土地财政与宏观经济波动[J]. 金融研究, 2019, 471(9): 1-18.
[6] 汝毅, 薛健, 张乾. 媒体新闻报道的声誉溢出效应[J]. 金融研究, 2019, 470(8): 189-206.
[7] 陈湘鹏, 周皓, 金涛, 王正位. 微观层面系统性金融风险指标的比较与适用性分析——基于中国金融系统的研究[J]. 金融研究, 2019, 467(5): 17-36.
[8] 李文喆. 中国影子银行的经济学分析:定义、构成和规模测算[J]. 金融研究, 2019, 465(3): 53-73.
[9] 罗棪心, 麻志明, 王亚平. 券商跟踪海外上市公司对国内分析师盈余预测准确性的影响[J]. 金融研究, 2018, 458(8): 190-206.
[10] 张靖佳, 孙浦阳, 古芳. 欧洲量化宽松政策对中国企业出口影响——一个汇率网状溢出效应视角[J]. 金融研究, 2017, 447(9): 18-34.
[11] 尹力博, 吴优. 离岸人民币区域影响力研究——基于信息溢出的视角[J]. 金融研究, 2017, 446(8): 1-18.
[12] 褚剑, 方军雄, 于传荣. 卖空约束放松与银行信贷决策[J]. 金融研究, 2017, 450(12): 111-126.
[13] 刘海明, 曹廷求. 信贷供给周期对企业投资效率的影响研究——兼论宏观经济不确定条件下的异质性[J]. 金融研究, 2017, 450(12): 80-94.
[14] 张翔, 刘璐, 李伦一. 国际大宗商品市场金融化与中国宏观经济波动[J]. 金融研究, 2017, 439(1): 35-51.
[15] 耿志祥, 孙祁祥. 金融危机和自然灾害对保险股票市场的影响与溢出效应检验[J]. 金融研究, 2016, 431(5): 65-81.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[8] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[9] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[10] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1