Please wait a minute...
金融研究  2019, Vol. 473 Issue (11): 1-18    
  本期目录 | 过刊浏览 | 高级检索 |
基于DSGE模型的绿色信贷激励政策研究
王遥, 潘冬阳, 彭俞超, 梁希
中央财经大学绿色金融国际研究院、财经研究院,北京 100081;
伦敦大学学院可持续资源研究所,英国伦敦;
中央财经大学金融学院,北京 100081;
爱丁堡大学商学院,英国爱丁堡
China's Incentive Policies for Green Loans: A DSGE Approach
WANG Yao, PAN Dongyang, PENG Yuchao, LIANG Xi
International Institute of Green Finance & Institute for Finance and Economics, Central University of Finance and Economics;
Institute for Sustainable Resources, University College London;
School of Finance, Central University of Finance and Economics;
Business School, University of Edinburgh
下载:  PDF (1666KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在绿色金融政策实践与有关学术理论快速发展的背景下,本文以绿色信贷的激励政策为切入点,提供一种分析绿色金融政策的理论模型分析框架,并基于模型开展量化的政策效果分析。本文在真实商业周期框架的基础上引入银行部门,通过拆分厂商部门为“绿色”与“其它”两部分,并设置中央银行与财政部门的相关政策,纳入了绿色信贷激励政策。研究发现,针对绿色信贷的贴息、定向降准、再贷款(调整再贷款利率与质押率)均是有效且合意的激励政策,一定强度的政策不仅能够提高绿色信贷量,在绿色意义上优化经济结构,而且对总产出、总就业不会造成显著的负面影响,从而带来“经济”与“环境”双赢的结果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王遥
潘冬阳
彭俞超
梁希
关键词:  绿色信贷  激励政策  DSGE模型    
Summary:  In the context of attempts to ensure ecologically sustainable development in China, there has been an increase in “green finance” and “green loan” policies in recent years to promote the devotion of capital resources to sustainable development. Academic research in this area has grown tremendously. However, theories and models of green finance and policy analysis based on them remain inadequate. This study develops a theoretical and quantitative model to analyze Chinas incentive policies for green loans and applies this model to identify the likely effects of such policies. This will provide a prototype for modeling green financial policies in academia and help the government design such policies in the real world.
In China, “green financial policy” normally means governmental and regulatory measures that promote financial services that support environmental improvement, climate change mitigation and adoption, and more efficient resource utilization. More narrowly, it refers to financial policy tools that incentivize green financing activities, such as interest subsidies, central bank relending, government guarantees, lowered risk weights, and reduced capital requirements for green loans (i.e. incentive policies). These policy tools have been proposed or implemented in the wake of the release of the Integrated Reform Plan for Promoting Ecological Progress in 2015 and the Guidelines for Establishing the Green Financial System in 2016 by the central government.
While green financial policy has developed rapidly in practice, relevant academic research lags behind. Research on green financial policy has mostly involved qualitative policy recommendations. Quantitative research on green finance has begun to accumulate in recent years; however, few studies have focused on the economic and environmental effects of green financial policy. It is unknown whether this kind of policy is effective and what it will bring to the macro-economy.
Given this background, this research aims to provide a theoretical model suitable for the quantitative analysis of incentive policies for green loans and to theoretically show their economic and environmental effects. The specific policy tools we study include interest subsidies, directional reduction for reserve ratio requirements, and central bank relending.
To do this, we build a Dynamic Stochastic General Equilibrium (DSGE) model based on the Real Business Cycle (RBC) framework. The model makes two major extensions to the RBC framework. (1) The banking sector conducting green lending is added. The firm sector must use loans as “working capital” to pay for all costs. The bank provides green and traditional loans to different firms. The household sector can deposit savings to the bank. (2) The firm sector is divided into two sub-sectors: green and other firms. The pollution from the production process is introduced and the green firms pollutes less than other firms. Green firms are financed by green loans, while other firms are financed by traditional loans. These two extensions allow us to analyze financing activities and to distinguish green loans from traditional loans. Incentive policies for green loans can then be included after introducing the central bank and government sectors. Parametric data are calibrated from China.
According to this model, we find the following: (1) All three policies (interest subsidies, directional reduction for reserve ratio requirements, and central bank relending) can increase the amount of green loans. Policy strength has a certain order. This shows the direct effects of such policies. (2) Temporary policy changes (incentives) can increase the output and employment of green firms while decreasing the output and employment of other firms. The total output, employment and pollution will also be negatively affected slightly, as will pollution emission. The positive impacts of policy are more significant than the negative impacts. This shows the indirect effects of such policies, including benefits and costs, for the entire economy and environment. (3) If the three policies are set endogenously in the economy as emission-pegged rules, they can also enhance the share of green-related variables in the economy. However, only when they reach a certain level of strength can the pegged policies bring about a green transformation of the economy in the face of productivity shock.
The conclusion is that interest subsidies, directional reduction of reserve ratio requirements, and central bank relending are all effective ways of incentivizing green loans and have positive effects on the greening of the economy. The policy cost is not high. This implies that increased investment in green financial policy is desirable.
Keywords:  Green Loan    Incentive Policy    DSGE Model
JEL分类号:  E10   E58   G28  
基金资助: * 本文得到中国国家留学基金、国家社会科学基金重点项目(18AZD013)、国家自然科学基金青年项目(71903208)、国家重点研发计划(2016YFC0503406)、中央高校基本科研业务费专项资金、中央财经大学科研创新团队支持计划的资助。
作者简介:  王 遥,经济学博士,研究员,中央财经大学绿色金融国际研究院、财经研究院,E-mail:yaowang2013@163.com.
潘冬阳(通讯作者),博士研究生,伦敦大学学院可持续资源研究所,E-mail:pandongyang@126.com.
彭俞超,经济学博士,讲师,中央财经大学金融学院,E-mail:yuchao.peng@cufe.edu.cn.
梁 希,经济学博士,高级讲师,爱丁堡大学商学院,E-mail:xi.liang@ed.ac.uk.
引用本文:    
王遥, 潘冬阳, 彭俞超, 梁希. 基于DSGE模型的绿色信贷激励政策研究[J]. 金融研究, 2019, 473(11): 1-18.
WANG Yao, PAN Dongyang, PENG Yuchao, LIANG Xi. China's Incentive Policies for Green Loans: A DSGE Approach. Journal of Financial Research, 2019, 473(11): 1-18.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V473/I11/1
[1]韩立岩、蔡立新和尹力博,2017,《中国证券市场的绿色激励:一个四因素模型》,《金融研究》第1期,第145~161页。
[2]罗伯特·希勒,2012,《金融与好的社会》,中信出版社,2012年12月。
[3]马骏,2017,《构建中国绿色金融体系》,中国金融出版社,2017年10月。
[4]彭俞超和方意,2016,《结构性货币政策、产业结构升级与经济稳定》,《经济研究》第7期,第29~42页。
[5]宋鑫,2016,《我国绿色信贷传导路径的一般均衡实证研究》,《金融监管研究》第5期,第87~97页。
[6]王广谦,1997,《经济发展中金融的贡献与效率》,中国人民大学出版社,1997年3月。
[7]王遥和张家亮,2014,《绿色信贷政策的演进、影响及发展》,《中国国情国力》第9期,第45~47页。
[8]王遥、潘冬阳和张笑,2016,《绿色金融对中国经济发展的贡献研究》,《经济社会体制比较》第6期,第33~42页。
[9]薛爽、赵泽朋和王迪,2017,《企业排污的信息价值及其识别——基于钢铁企业空气污染的研究》,《金融研究》第1期,第162~176页。
[10]闫海洲和陈百助,2017,《气候变化、环境规制与公司碳排放信息披露的价值》,《金融研究》第6期,第142~158页。
[11]叶燕斐和李晓文,2014,《构建中国绿色信贷政策制度体系》,《中国银行业》第Z1期,第70~74页。
[12]张雪兰和何德旭,2010,《环境金融发展的财税政策激励:国际经验及启示》,《财政研究》第5期,第78~80页。
[13]Alexander, K. 2014. “Stability and Sustainability in Banking Reform: Are Environmental Risks Missing in Basel III” CISL & UNEPFI Report.
[14]Annicchiarico, B. and Di Dio, F. 2017. “GHG Emissions Control and Monetary Policy” Environmental and Resource Economics, 67(4):823~851.
[15]Campiglio, E. 2016. “Beyond Carbon Pricing: The Role of Banking and Monetary Policy in Financing the Transition to a Low-Carbon Economy” Ecological Economics, 121:220~230.
[16]Campiglio, E., Dafermos, Y., Monnin, P., Ryan-Collins, J., Schotten, G., and Tanaka, M. 2018. “Climate Change Challenges for Central Banks and Financial Regulators” Nature Climate Change, 8(6):462~468.
[17]Dietz, S., Bowen, A., Dixon, C., and Gradwell, P. 2016. “Climate Value at Risk' of Global Financial Assets” Nature Climate Change, 6(7):676~679.
[18]Economides, G. and Xepapadeas, A. (2018). “Monetary Policy under Climate Change” Bank of Greece Working Paper 247.
[19]Hong, H., Li, F. W., and Xu, J. 2019. “Climate Risks and Market Efficiency” Journal of econometrics, 208(1):265~281.
[20]Jermann, U. and Quadrini, V. 2012. “Macroeconomic Effects of Financial Shocks” American Economic Review, 102(1):238~71.
[21]Justiniano, A., Primiceri, G. E., and Tambalotti, A. 2010. “Investment Shocks and Business Cycles” Journal of Monetary Economics, 57(2):132~145.
[22]Liu, J. Y., Xia, Y., Fan, Y., Lin, S. M., and Wu, J. 2017. “Assessment of a Green Credit Policy Aimed at Energy-Intensive Industries in China based on a Financial CGE Model” Journal of Cleaner Production, 163:293~302.
[23]Mercure, J.F., Knobloch, F., Pollitt, H., Lewney, R., Rademakers, K., Eichler, L., Laan, L., Paroussos, L. (2016). “Policy-Induced Energy Technological Innovation and Finance for Low-Carbon Economic Growth” European Commission Report.
[24]Monnin, P. 2018. “Central Banks and the Transition to a Low-Carbon Economy” Council on Economic Policies Discussion Note.
[25]Pollitt, H., and Mercure, J. F. 2018. “The Role of Money and the Financial Sector in Energy-Economy Models Used for Assessing Climate and Energy Policy” Climate Policy, 18(2):184~197.
[26]Punzi, M. T. 2019. “Role of Bank Lending in Financing Green Projects: A Dynamic Stochastic General Equilibrium Approach” Handbook of Green Finance: Energy Security and Sustainable Development, 1-23.
[27]Rademaekers, K., Eichler, L., Perroy, L., Laan, J. 2017. “Assessing the European Clean Energy Finance Landscape, with Implications for Improved Macro-Energy Modelling” European Commission Report.
[28]Thoma, J. and Hilke A. 2018. “The Green Supporting Factor-Quantifying the Impact on European Banks and Green Finance” The 2 Degree Investing Initiative Report.
[29]Torres, J. L. 2015. “Introduction to Dynamic Macroeconomic General Equilibrium Models” Vernon Press.
[1] 林东杰, 崔小勇, 龚六堂. 货币政策、消费品和投资品通货膨胀——基于金融加速器视角[J]. 金融研究, 2019, 465(3): 18-36.
[2] 苏冬蔚, 连莉莉. 绿色信贷是否影响重污染企业的投融资行为?[J]. 金融研究, 2018, 462(12): 123-137.
[3] 童中文, 范从来, 张炜, 朱辰. 金融审慎监管与货币政策的协同效应——虑及金融系统性风险防范[J]. 金融研究, 2017, 441(3): 16-32.
[4] 马鑫媛, 赵天奕. 非正规金融与正规金融双重结构下货币政策工具比较研究[J]. 金融研究, 2016, 428(2): 137-144.
[5] 马骏, 施康, 王红林, 王立升. 利率传导机制的动态研究[J]. 金融研究, 2016, 427(1): 31-49.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1