Please wait a minute...
金融研究  2019, Vol. 473 Issue (11): 38-56    
  本期目录 | 过刊浏览 | 高级检索 |
房价波动、金融稳定与最优宏观审慎政策
司登奎, 葛新宇, 曾涛, 李小林
青岛大学经济学院,山东青岛 266061;
苏州大学东吴商学院,江苏苏州 215012;
浙江大学经济学院, 浙江杭州 310027;
中国海洋大学经济学院,山东青岛 266100
House Price Fluctuations, Financial Stability,and Optimal Macroprudential Policies
SI Dengkui, GE Xinyu, ZENG Tao, LI Xiaolin
School of Economics, Qingdao University;
Dongwu Business School, Soochow University;
School of Economics and Academy of Financial Research, Zhejiang University;
School of Economics, Ocean University of China
下载:  PDF (895KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文通过构建包含家庭住房抵押借款摩擦和银行贷款摩擦的动态随机一般均衡模型,重点考察了异质性冲击下房价波动对金融稳定的影响。研究发现,房价上涨会导致银行风险溢价及杠杆率显著上升,进而加剧金融体系的内在不稳定。为降低房价波动及维护金融稳定,选取两类宏观审慎政策工具进行逆周期调控实验,结果表明,在住房需求冲击下,金融管理部门应选取贷款价值比政策,且应对房贷积极调控,而对房价进行中性调控。在最终产品部门生产率冲击、房地产部门生产率冲击及跨期偏好冲击下,应选取资本充足率政策,但对房贷和房价调控力度的把握则存在差异。本研究为厘清房价波动对金融稳定的动态传导机制,以及金融管理部门如何选取宏观审慎政策工具以稳定房价并降低系统性金融风险提供了启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
司登奎
葛新宇
曾涛
李小林
关键词:  房价波动  金融稳定  宏观审慎政策  金融摩擦  动态随机一般均衡模型    
Summary:  Many of the financial crises that have occurred in recent decades arose from excess credit expansion induced by a rapid, unsustainable growth of house prices. Such an excess credit expansion threatens the stability of the financial system. China, as the world's second largest economy, has been experiencing an unprecedented housing boom accompanied by rapid credit expansion in the wake of the 1998 housing commercialization reform. It is thus a matter of public concern, and of great interest to authorities, how to maintain financial stability by policy interventions. In recent years, there has been a growing consensus among scholars that in addition to monetary instruments, macroprudential instruments might be good alternative candidates for containing the financial imbalances induced by large swings in house prices. However, the design of an appropriate macroprudential tool and the desirable degree of intervention remain matters of academic controversy.
Using Chinese data, we develop and estimate a dynamic stochastic general equilibrium (DSGE) model that allows for financial frictions tied to households and financial intermediaries. The model is used to address two sets of issues associated with the Chinese economy. First, we investigate the extent to which the model can account for empirical evidence that house price fluctuations affect investment, loans, and bank leverage ratio over the business cycle. In particular, a positive shock to house prices directly drives up house prices and housing investment, leading to an increase in loans. It then causes a rise in the interest spread and subsequently encourages banks to raise their leverage ratio. In the presence of financial frictions, the effects of housing demand shocks are amplified and propagated over time. In this regard, a rapid growth of house prices may undermine financial stability. Second, we conduct counter-cyclical experiments with macroprudential instruments (loan-to-value ratio and capital adequacy ratio) to examine the extent to which they can stabilize the housing market, the financial system, and the macroeconomy as financial imbalances increase.
The contributions of this paper are threefold. First, we build a theoretical model with a rigorous micro-foundation to study the interaction between the financial and housing markets over the business cycle during the housing boom in China. Second, the baseline model with financial frictions is capable of capturing the mechanism by which fluctuations in house prices initiated by an exogenous shock influence the bank's balance sheet and the macroeconomy. Third, it provides a better understanding of the effectiveness of macroprudential tools in alleviating the instability of the financial and housing market under different shocks.
The main results of this paper are as follows. With the estimated parameters, the model successfully accounts for the joint behaviors of house prices, investment, loans, and bank leverage ratio observed in the data. More importantly, it captures the mechanism by which fluctuations in house prices affect the bank's balance sheet and the macroeconomy as a whole in response to exogenous shocks to house prices. Moreover, we find that a countercyclical loan-to-value (LTV) requirement that directly responds to the credit gap and house price gap can effectively stabilize the financial and housing markets and improve social welfare in response to a housing preference shock, but it does poorly in response to productivity and time preference shocks. Lastly, a countercyclical capital adequacy requirement that directly responds to the credit gap and house price gap performs well in stabilizing the economy and improving social welfare when productivity and time preference shocks impinge on the economy.
This paper not only provides a better understanding of the link between house price fluctuations and financial stability but also reveals the importance of macroprudential policies in maintaining the stability of the financial and housing markets. Our results suggest that macroprudential authorities should distinguish the sources of house price fluctuations when designing and implementing policies. Failure to do so may lead to enormous losses of welfare to society and the economy.
Keywords:  House Price Fluctuations    Financial Stability    Macroprudential Policies    Financial Frictions    DSGE Model
JEL分类号:  E32   E44   E60  
基金资助: * 本文感谢国家社科基金青年项目“金融稳定目标下货币政策与宏观审慎政策协调机制研究”(18CJY056)的资助。
作者简介:  司登奎,经济学博士,副教授,青岛大学经济学院,E-mail:sidkfinance@163.com.
葛新宇(通讯作者),经济学博士,讲师,苏州大学东吴商学院,E-mail:gex_suda@163.com.
曾 涛,经济学博士,研究员,浙江大学经济学院,E-mail:ztzt6512@vip.sina.com.
李小林,经济学博士,副教授,中国海洋大学经济学院,E-mail:smileman2004@126.com.
引用本文:    
司登奎, 葛新宇, 曾涛, 李小林. 房价波动、金融稳定与最优宏观审慎政策[J]. 金融研究, 2019, 473(11): 38-56.
SI Dengkui, GE Xinyu, ZENG Tao, LI Xiaolin. House Price Fluctuations, Financial Stability,and Optimal Macroprudential Policies. Journal of Financial Research, 2019, 473(11): 38-56.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V473/I11/38
[1]陈彦斌、郭豫媚和陈伟泽,2015:《2008年金融危机后中国货币数量论失效研究》,《经济研究》第4期,第21~35页。
[2]方意,2015:《货币政策与房地产价格冲击下的银行风险承担分析》,《世界经济》第7期,第73~98页。
[3]方意、赵胜民和谢晓闻,2012:《货币政策的银行风险承担分析——兼论货币政策与宏观审慎政策协调问题》,《管理世界》第11期,第9~19页。
[4]何青、钱宗鑫和郭俊杰,2015:《房地产驱动了中国经济周期吗?》,《经济研究》第12期,第41~53页。
[5]康力和龚六堂,2014:《金融摩擦、银行净资产与国际经济危机传导》,《经济研究》第5期,第147~159页。
[6]况伟大和王琪琳,2017:《房价波动、房贷规模与银行资本充足率》,《金融研究》第11期,第34~48页。
[7]陆磊和杨骏,2016:《流动性、一般均衡与金融稳定的“不可能三角”》 ,《金融研究》第1期,第1~13页。
[8]马勇和陈雨露,2013:《宏观审慎政策的协调与搭配:基于中国的模拟分析》,《金融研究》第8期,第57~69页。
[9]王爱俭和王璟怡,2014:《宏观审慎政策效应及其与货币政策关系研究》,《经济研究》第4期,第17~31页。
[10]徐忠,2017:《中国稳健货币政策的实践经验与货币政策理论的国际前沿》,《金融研究》第1期,第1~21页。
[11]张建华和贾彦东,2012:《宏观审慎政策的理论与实践进展》,《金融研究》第1期,第20~35页。
[12]张晓晶和孙涛,2006:《中国房地产周期与金融稳定》,《经济研究》第1期,第23~33页。
[13]赵扶扬、王忏和龚六堂,2017,《土地财政与中国经济波动》,《经济研究》第12期,第46~61页。
[14]Allen, F., and Gale, D.,2000, “Financial Contagion”. Journal of Political Economy, 108(1):1~33.
[15]Carroll, C. D., 2006, “The Method of Endogenous Gridpoints for Solving Dynamic Stochastic Optimization Problems”, Economics Letters, 91(3):312~320.
[16]Davis, M. A., and Heathcote, J., 2005,“Housing and the Business Cycle” ,International Economic Review, 46(3):751~784.
[17]Delis, M. D., and Kouretas, G. P., 2011, “Interest Rates and Bank Risk-taking”. Journal of Banking & Finance, 35(4): 840~855.
[18]Fendogˇlu S., 2014, “Optimal Monetary Policy Rules, Financial Amplification, and Uncertain Business Cycles”. Journal of Economic Dynamics and Control, (46):271~305.
[19]Gerali, A., Neri, S., Sessa, L., and Signoretti, F. M. ,2010, “Credit and Banking in a DSGE Model of the Euro Area”,Journal of Money, Credit and Banking, 42(s1):107~141.
[20]Gertler, M., and Karadi, P. ,2011, “A Model of Unconventional Monetary Policy”,Journal of Monetary Economics, 58(1):17~34.
[21]Gertler, M., and Kiyotaki, N. ,2015, “Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy”, American Economic Review, 105(7): 2011~43.
[22]Gertler, M., and Kiyotaki, N., 2010, “Financial Intermediation and Credit Policy in Business Cycle Analysis”, In Handbook of Monetary Economics , (3):547~599.
[23]Gertler, M., Kiyotaki, N., and Queralto, A., 2012, “Financial Crises, Bank Risk Exposure and Government Financial Policy”,Journal of Monetary Economics, (59):S17~S34.
[24]Gervais, M. ,2002, “Housing Taxation and Capital Accumulation”, Journal of Monetary Economics, 49(7):1461~1489.
[25]Iacoviello, M. ,2005, “House Prices, Borrowing Constraints, and Monetary Policy in the Business Cycle”,American Economic Review, 95(3): 739~764.
[26]Iacoviello, M., and Neri, S. ,2010,“Housing Market Spillovers: Evidence from an Estimated DSGE Model”,American Economic Journal: Macroeconomics, 2(2):125~164.
[27]Iacoviello, M., and Pavan, M., 2013, “Housing and Debt Over the Life Cycle and Over the Business Cycle”, Journal of Monetary Economics, 60(2):221~238.
[28]Kiley, M. T., and Sim, J., 2017, “Optimal Monetary and Macroprudential Policies: Gains and Pitfalls in a Model of Financial Intermediation”,Journal of Macroeconomics, (54):232~259.
[29]Kiyotaki, N., Michaelides, A., and Nikolov, K., 2011, “Winners and Losers in Housing Markets”,Journal of Money, Credit and Banking, 43(2‐3):255~296.
[30]Mendicino, C., and Punzi, M. T.,2014, “House Prices, Capital Inflows and Macroprudential Policy”,Journal of Banking & Finance, (49):337~355.
[31]Niinimäi, J. P., 2009, “Does Collateral Fuel Moral Hazard in Banking”, Journal of Banking & Finance, (33): 514~521.
[1] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[2] 马骏, 何晓贝. 货币政策与宏观审慎政策的协调[J]. 金融研究, 2019, 474(12): 58-69.
[3] 李斌, 吴恒宇. 对货币政策和宏观审慎政策双支柱调控框架内在逻辑的思考[J]. 金融研究, 2019, 474(12): 1-17.
[4] 马勇. “双支柱”调控框架的理论与经验基础[J]. 金融研究, 2019, 474(12): 18-37.
[5] 王信, 贾彦东. 货币政策和宏观审慎政策的关联及启示——基于英格兰银行的经验[J]. 金融研究, 2019, 474(12): 38-57.
[6] 黄益平, 曹裕静, 陶坤玉, 余昌华. 货币政策与宏观审慎政策共同支持宏观经济稳定[J]. 金融研究, 2019, 474(12): 70-91.
[7] 方意, 王晏如, 黄丽灵, 和文佳. 宏观审慎与货币政策双支柱框架研究——基于系统性风险视角[J]. 金融研究, 2019, 474(12): 106-124.
[8] 林滨, 王弟海, 陈诗一. 企业效率异质性、金融摩擦的资源再分配机制与经济波动[J]. 金融研究, 2018, 458(8): 17-32.
[9] 温信祥, 苏乃芳. 大资管、影子银行与货币政策传导[J]. 金融研究, 2018, 460(10): 38-54.
[10] 金鹏辉, 王营, 张立光. 稳增长条件下的金融摩擦与杠杆治理[J]. 金融研究, 2017, 442(4): 78-94.
[11] 李锋森. 我国融资融券助涨助跌了吗?——基于波动非对称性视角[J]. 金融研究, 2017, 440(2): 147-162.
[12] 陈登科, 陈诗一. 中国财政支出乘数研究——基于金融摩擦与“超低利率”的视角[J]. 金融研究, 2017, 450(12): 17-32.
[13] 魏玮, 陈杰. 加杠杆是否一定会成为房价上涨的助推器?——来自省际面板门槛模型的证据[J]. 金融研究, 2017, 450(12): 48-63.
[14] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34-48.
[15] 李力, 王博, 刘潇潇, 郝大鹏. 短期资本、货币政策和金融稳定[J]. 金融研究, 2016, 435(9): 18-32.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1