Please wait a minute...
金融研究  2025, Vol. 535 Issue (1): 189-206    
  本期目录 | 过刊浏览 | 高级检索 |
主力资金异象和投资者信息博弈
康琦, 高峰, 刘硕, 王倩, 叶子文
中国人民银行研究局,北京 100800;
清华大学经济管理学院, 北京 100084;
北京工商大学经济学院,北京 100048
The Anomaly of Main Inflow and the Information Game of Investors
KANG Qi, GAO Feng, LIU Shuo, WANG Qian, YE Ziwen
Research Bureau of the People's Bank of China;
School of Economics and Management, Tsinghua University;
School of Economics, Beijing Technology and Business University
下载:  PDF (691KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 散户追逐主力资金往往被认为是非理性的行为,然而,本文对A股市场“主力资金异象”的分析表明,散户跟随主力资金的行为是信息不对称情况下不同投资者之间理性博弈的结果。机构投资者通过释放大单信号吸引散户接盘;散户投资者选择跟随大单信号投资来降低信息成本。博弈的结果导致主力资金净流入率与未来股票收益率呈正相关关系。进一步研究发现,对于散户参与数量、市值和机构持股比例更高的A股股票,主力资金的预测能力更强。为减少散户追逐主力资金的现象,本文论证了建设规范透明的资本市场的重要性,建议发展指数化投资,以降低散户投资者信息劣势和促进机构投资者进一步发展壮大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康琦
高峰
刘硕
王倩
叶子文
关键词:  主力资金  市场异象  信息博弈    
Summary:  China's capital markets are characterized by a dominant presence of retail investors, whose trading behavior is frequently blamed for various market anomalies. Contrary to conventional wisdom, this paper examines how the rational decision-making of retail investors actually contributes to the observed main fund anomaly. The paper demonstrates that this phenomenon stems from a rational information game between institutional and retail investors. Our analysis reveals that institutional investors employ large-order trades as informative signals, which retail investors choose to follow to minimize their information acquisition costs. This interaction explains why main fund indicators-derived from large trade data-possess significant predictive power for future returns and can generate substantial alpha when incorporated into investment strategies. The study identifies a novel mechanism behind the main fund anomaly, challenging the prevailing view that such anomalies necessarily result from retail investor irrationality. Our findings offer valuable implications for enhancing market efficiency and anomaly mitigation strategies.
Central to our framework is the recognition of information asymmetry in Chinese market, where retail investors face comparatively higher costs in obtaining reliable stock performance information. This environment creates a mutually beneficial “trading surplus” that incentivizes strategic interaction to enhance expected utility: institutions initiate positions through large orders, while retail investors optimally respond by following these signals and buy stocks from institutions. This sequential trading equilibrium generates superior outcomes for both parties compared to scenarios without large-order trading, ultimately producing the observed pattern where large trades systematically precede price increases.
The potency of this mechanism varies with “trading surplus” levels. When retail participation is high, institutions can confidently expect sufficient follow-on demand to support their positions, while retail investors benefit from reduced information costs. The trading surplus-comprising expected institutional gains from large-order trading and retail savings from signal following-becomes particularly substantial when large orders convey stronger information content, thereby intensifying the anomaly.
Our empirical investigation employs comprehensive A-share market data from 2010-2023, applying careful data filters to ensure robustness. We exclude ST/*ST stocks and the smallest decile by market capitalization to mitigate shell company effects, while implementing standard winsorization procedures (at 1%) to mitigate the effect of extreme values.
This study proposes and empirically tests the following hypotheses. First, we verify the existence of significant main fund anomalies in China's stock market (H1): Stocks with higher weekly net main fund inflows demonstrate significantly higher returns in the subsequent holding period. Empirical results confirm the positive predictive power of main fund flows at weekly frequency-a 1% difference in main fund exposure between two stocks predicts an average annualized return spread of 0.63% in the following week.
Second, to validate the information game mechanism between institutional and retail investors, we further examine how the main fund anomaly becomes more pronounced in stocks with “greater retail participation” and “stronger large-order signaling effects.” Regarding retail participation, we test through high-low main fund long-short portfolios: H2a posits that the positive correlation between weekly main fund inflows and subsequent returns strengthens during high-market-sentiment periods; H2b suggests this relationship intensifies for stocks with higher Baidu search indices. These hypotheses fundamentally reflect that stocks attracting greater retail attention (evidenced by elevated market sentiment or search frequency) exhibit higher relative retail investor participation.
Concerning the signaling role of large orders, we establish: H3a shows the main fund-return relationship strengthens for large-cap stocks, where informed traders more strategically employ large orders; H3b demonstrates this effect amplifies in stocks with higher institutional ownership. The underlying logic is that for large-cap, institutionally-dominated stocks, information holders preferentially use large orders to convey signals, thereby enhancing the informational content of these trades.
The study identifies high retail participation and information asymmetry as key drivers of the main fund anomaly—a manifestation of market inefficiency—and proposes several measures to enhance market efficiency. First, reducing information asymmetry through stricter disclosure requirements for listed firms and improved trading data transparency would help narrow the informational gap between retail and institutional investors. Second, encouraging retail investors to channel their investments through institutional intermediaries (e.g., mutual funds) could mitigate the inefficiencies arising from their inherent informational disadvantages, even though their trading behavior remains rational. Additionally, given that existing research faces challenges in linking large trades and main fund flows to institutional activity due to limited disclosure, our novel factor construction method provides a clearer connection, aiding both academic research and regulatory oversight. Beyond advancing the understanding of market anomalies, this work offers actionable policy insights to promote a more efficient and transparent stock market.
Keywords:  Main Fund    Market Anomaly    Information Game
JEL分类号:  G11   G12   G14  
基金资助: * 本文感谢国家自然科学基金项目(72192801,72303125,71671101)、国家重点研发计划(2023YFC3305404)和北京工商大学数字商科与首都发展创新中心项目(SZSK202226)的资助。感谢匿名审稿人的宝贵意见,文责自负。
作者简介:  康 琦,金融学博士,中国人民银行研究局,E-mail:kqi@pbc.gov.cn. 高 峰,金融学博士,副教授,清华大学经济管理学院,E-mail:gaof@sem.tsinghua.edu.cn. 刘 硕,经济学博士,副教授,清华大学经济管理学院,E-mail:liushuo3@sem.tsinghua.edu.cn. 王 倩,经济学博士,副教授,北京工商大学经济学院,E-mail:qwbuaa@163.com. 叶子文,金融工程博士,博士后研究员,清华大学经济管理学院,E-mail:yzwarch@hotmail.com.
引用本文:    
康琦, 高峰, 刘硕, 王倩, 叶子文. 主力资金异象和投资者信息博弈[J]. 金融研究, 2025, 535(1): 189-206.
KANG Qi, GAO Feng, LIU Shuo, WANG Qian, YE Ziwen. The Anomaly of Main Inflow and the Information Game of Investors. Journal of Financial Research, 2025, 535(1): 189-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V535/I1/189
[1]陈睿,2011,《大单交易与股票价格:来自我国沪市的经验证据》,《财经问题研究》第12期,第67~72页。
[2]马丽,2016,《中国股票市场羊群效应实证分析》,《南开经济研究》第1期,第144~153页。
[3]许泳昊、徐鑫和朱菲菲,2022,《中国A股市场的“大单异象”研究》,《管理世界》第7期,第120~136页。
[4]易志高和茅宁,2009,《中国股市投资者情绪测量研究:CICSI的构建》,《金融研究》第11期,第174~184页。
[5]俞庆进和张兵,2012,《投资者有限关注与股票收益——以百度指数作为关注度的一项实证研究》,《金融研究》第8期,第152~165页。
[6]朱菲菲、李惠璇、徐建国和李宏泰,2019,《短期羊群行为的影响因素与价格效应——基于高频数据的实证检验》,《金融研究》第7期,第191~206页。
[7]朱燕建、蒋岳祥和李奥,2012,《信息拥有者的交易单选择策略与监管的执法强度》,《金融研究》第6期,第154~166页。
[8]Bikhchandani, S. and Sharma, S., 2000, “Herd Behavior in Financial Markets,” IMF Economic Review, 47(3), pp. 279~310.
[9]Chan, L. K. and Lakonishok, J., 1995, “The Behavior of Stock Prices Around Institutional Trades,” The Journal of Finance, 50(4), pp. 1147~1174.
[10]Fama, E. F. and French, K. R., 1992, “The Cross~section of Expected Stock returns,” The Journal of Finance, 47(2), pp. 427~465.
[11]Grundy, B.D. and Maureen McNichols, 1989, “Trade and the Revelation of Information through Prices and Direct Disclosure,”The Review of Financial Studies, 2(4), pp. 495-526
[12]Holthausen, R. W., Leftwich, R. W. and Mayers, D., 1987, “The Effect of Large Block Transactions on Security Prices: A Cross-sectional Analysis,” Journal of Financial Economics, 19(2), pp. 237~267.
[13]Kraus, A. and Stoll, H. R., 1972, “Price Impacts of Block Trading on the New York Stock Exchange,” The Journal of Finance, 27(3), pp. 569~588.
[14]Kyle, A. S., 1985, “Continuous Auctions and Insider Trading,” Econometrica, pp. 1315~1335.
[15]Lakonishok, J., Shleifer, A. and Vishny, R.W., 1992. “The Impact of Institutional Trading on Stock Prices,” Journal of Financial Economics, 32(1), pp.23~43.
[16]Newey, Whitney K., and Kenneth D. White. 1987. “A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,”Econometrica, 55 (3), pp.703~708.
[17]Preis T, Moat H S and Stanley H E, 2013,“Quantifying Trading Behavior in Financial Markets Using Google Trends,” Scientific Reports, 3(1), pp. 1~6.
[18]Stambaugh, R. F. and Yuan, Y., 2017, “Mispricing Factors,” The Review of Financial Studies, 30(4), pp. 1270~1315.
[19]Yao, J., Ma, C. and He, W. P., 2014, “Investor Herding Behaviour of Chinese Stock Market,” International Review of Economics and Finance, 29, pp. 12~29.
[1] 叶帅, 张劲帆, 郑凯轩. 中国新基金过度发行之谜和投资者保护[J]. 金融研究, 2024, 531(9): 171-188.
[2] 肖欣荣, 周晏伊. 中国A股涨跌停交易制度与投资者处置效应[J]. 金融研究, 2024, 531(9): 153-170.
[3] 周利, 吴雨, 易行健. 数字经济发展、资产配置效率与居民财产性收入——来自中国家庭微观调查数据的证据[J]. 金融研究, 2024, 528(6): 151-168.
[4] 钟超杰, 赵淳, 高峰, 王天宇, 王倩. 金融科技改善你的基金投资了吗?——基于基金销售渠道的分析[J]. 金融研究, 2024, 527(5): 114-131.
[5] 李学峰, 齐霄, 徐荣. 基金赚钱与投资者亏钱现象为何并存?——基于共同代理的理论解释[J]. 金融研究, 2024, 526(4): 113-131.
[6] 马腾, 张晓燕, 李志勇. 期权隐含信息和价格发现——基于中国场内期权市场的研究[J]. 金融研究, 2024, 523(1): 169-186.
[7] 徐凤敏, 景奎, 李雪鹏. “双碳”目标背景下基于ESG整合的投资组合研究[J]. 金融研究, 2023, 518(8): 149-169.
[8] 林兟, 何为, 余剑峰, 熊熊. 公募基金改善了市场定价效率吗?——持股基金质量与股票收益[J]. 金融研究, 2023, 514(4): 149-167.
[9] 曾诗鸿, 贾婧敏, 姚树洁, 韦开蕾, 钟震. 基于Copula模型的中国碳市场叠加风险度量[J]. 金融研究, 2023, 513(3): 93-111.
[10] 王亚柯, 刘东亚. 信贷约束与家庭金融市场参与[J]. 金融研究, 2023, 512(2): 171-188.
[11] 冯玉林, 汤珂, 康文津. 中国大宗商品期货市场定价机制研究[J]. 金融研究, 2022, 510(12): 149-167.
[12] 吴锟, 吴卫星, 王沈南. 金融教育是有效的吗?[J]. 金融研究, 2022, 509(11): 117-135.
[13] 张成思, 唐火青, 陈贞竹. 货币政策冲击对实体企业投资选择影响的“宿醉效应”[J]. 金融研究, 2022, 507(9): 1-19.
[14] 李斌, 雷印如. 中国公募基金挖掘了股票市场异象吗?[J]. 金融研究, 2022, 507(9): 188-206.
[15] 谭小芬, 李兴申, 苟琴. 全球投资者国别风险情绪对跨境股票资本流动的影响[J]. 金融研究, 2022, 504(6): 153-170.
[1] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[2] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1 -17 .
[3] 王贤彬, 黄亮雄, 董一军. 反腐败的投资效应——基于地区与企业双重维度的实证分析[J]. 金融研究, 2017, 447(9): 67 -82 .
[4] 梁上坤, 陈冬华. 银行贷款决策中的私人效用攫取——基于业务招待费的实证研究[J]. 金融研究, 2017, 442(4): 112 -127 .
[5] 王弟海, 崔小勇, 邹恒甫. OLG模型中的多重均衡和经济效率——兼论政府在经济中的作用[J]. 金融研究, 2017, 443(5): 1 -17 .
[6] 陆前进. 贸易条件与经常项目的动态变化关系——基于新开放经济宏观经济学框架的理论和“金砖五国”的实证研究[J]. 金融研究, 2017, 443(5): 32 -46 .
[7] 胡婷, 惠凯, 彭红枫. 异常波动停牌对股价波动性和流动性的影响研究——来自我国取消异常波动停牌的自然实验[J]. 金融研究, 2017, 447(9): 146 -160 .
[8] 闫先东, 高文博. 中央银行信息披露与通货膨胀预期管理——我国央行信息披露指数的构建与实证检验[J]. 金融研究, 2017, 446(8): 35 -49 .
[9] 高然, 龚六堂. 土地财政、房地产需求冲击与经济波动[J]. 金融研究, 2017, 442(4): 32 -45 .
[10] 陆瑶, 张叶青, 贾睿, 李健航. “辛迪加”风险投资与企业创新[J]. 金融研究, 2017, 444(6): 159 -175 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1