Please wait a minute...
金融研究  2025, Vol. 535 Issue (1): 170-188    
  本期目录 | 过刊浏览 | 高级检索 |
T+1交易制度对中国股票市场的影响——来自隐含期权价值的新证据
朱红兵, 张兵
河海大学商学院,江苏南京 211100;
南京大学商学院,江苏南京 210093
The Impact of T+1 Trading Mechanism on China's Stock Market——New Evidence Based on Implied Option Values
ZHU Hongbing, ZHANG Bing
School of Business, Hohai University;
School of Business, Nanjing University
下载:  PDF (1165KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 T+1交易制度影响投资者的交易意愿,进而影响了证券资产价格的形成机制。通过构建含隐含期权的股价模型,本文从理论上证明了T+1交易制度通过股价中的权利金致使负隔夜收益的产生。基于沪深A股的实证研究发现:(1)T+1交易制度运行产生了较高制度成本,是负隔夜收益的重要制度性原因。(2)股价中的隐含期权价值显著影响隔夜收益率,并随交易时间推移逐渐衰减,但套利限制会强化期权因素对隔夜收益的负向影响。(3)高频数据揭示,开盘时买卖双方议价能力不对等,T+1交易制度强化了投资者的卖出意愿而导致买方市场的形成。本文的研究丰富了中国情景的资产定价理论,也对完善中国股市交易制度、提升市场效率有实践启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱红兵
张兵
关键词:  T+1交易制度  流动性折价  隐含期权价值  隔夜收益率  制度成本    
Summary:  As the world's largest emerging market, China's stock market exhibits distinctive local characteristics with the T+1 trading mechanism as one of the prime example. First introduced in 1995, T+1 became a unique foundational system in China's stock market, standing apart from the mainstream global markets and representing a localized exploration of capital market infrastructure. It was originally designed to curtail rampant speculation in the market's early stages and maintain orderly trading. By restricting same-day sell orders by buyers, it lowered intraday trading frequency, effectively dampening speculative enthusiasm in early days. However, as the market matured and integrated more with the world, the limitations of T+1 have become increasingly apparent. Theoretically, T+1 can “cool down” the market by lowering trading frequency. But in a market with strong heterogeneity of beliefs, such external restrictions may exacerbate volatility and fuel speculation. In China's stock market, investors often hold widely divergent views and the market is flush with liquidity, so T+1 may have actually spurred speculative trading. Meanwhile, it prevents buyers from correcting mistakes in time, disadvantaging small and medium-sized investors. Furthermore, it heightens asymmetries of rights between investors in index futures and the spot market.
In recent years, the call for market reforms has grown more urgent. Ahead of the launch of the STAR Market (Sci-Tech Innovation Board) in 2019, whether to adopt T+0 or T+1 became a heated topic. In March 2021, the China Securities Regulatory Commission stated that T+0 trading involves numerous stakeholders and would have profound market impacts, thus requiring careful planning and thorough evaluation. While T+1 did play a positive role in the market's early stages, its suitability has been widely questioned amid demands for high-quality development in the capital market. However, China's capital market has operated under T+1 for so long that there is little comparative data under alternative settlement mechanisms, making it difficult for academic researchers to empirically evaluate its effects. Consequently, constructing a theoretical price model tailored to the Chinese context and quantifying the influence of T+1 have become key scholarly and practical challenges.
Against this backdrop, this paper introduces an implied put option framework that captures liquidity discounts embedded in stock pricing, splitting the stock price into its fundamental value and option value. Theoretically, we demonstrate the relationship between T+1 trading and overnight returns, and we empirically verify these findings using data from the Shanghai and Shenzhen A-share markets. We then further examine how arbitrage constraints moderate this relationship and use high-frequency index data to investigate the intraday decaying effect of the discount induced by T+1. Lastly, employing a Taylor expansion, we quantify the overnight return discount attributable to T+1. The results reveal: first, T+1 entails considerable institutional costs, distorts both intraday and overnight return distributions, and contributes to persistently negative overnight returns in China's stock market—with an estimated annual discount of 12.11% caused by T+1. Second, under T+1, stock prices reflect not only a company's fundamentals but also option-like liquidity discounts. Factors affecting this option value directly influence overnight returns: higher opening prices, greater historical volatility, and larger deviations between two consecutive days' opening prices tend to produce more negative overnight returns; meanwhile, a higher risk-free rate raises overnight returns. Arbitrage constraints amplify these negative relationships. Third, the option component embedded in the stock price peaks at the market open and then gradually decays throughout the trading day, leading, over the long run, to relatively lower open prices and higher close prices, and thus more negative overnight returns. High-frequency data show that T+1 increases trading volume at the open but does not lift overnight returns; in fact, it exacerbates negative returns. This reflects predominantly sell-side activity at the opening and suggests that T+1 amplifies investors' willingness to sell at the open.
From both theoretical and empirical perspectives, this paper enriches the study of China's distinct financial system by analyzing how market mechanisms shape asset pricing, and it offers valuable practical insights for refining the country's stock market infrastructure. Specifically, this study illustrates how T+1 imposes asymmetric trading constraints that spur opening-hour sell pressure, skewing intraday supply-demand dynamics and creating a buyer's market for much of the trading session. Considering financial stability, replacing T+1 with T+0 in the short term is challenging. Instead, its negative effects can be mitigated by complementary measures that rebalance supply and demand. For instance, exchanges could introduce flexible single-stock options, providing investors with additional hedging tools.
Keywords:  T+1 Trading System    Liquidity Discount    Implied Option Value    Overnight Return    Institutional Costs
JEL分类号:  G10   G18  
基金资助: * 本文感谢国家自然科学基金青年项目(72302075)和国家社会科学基金重大项目(23ZDA041)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  张 兵,管理学博士,教授,南京大学商学院,E-mail:zhangbing@nju.edu.cn.   
作者简介:  朱红兵,经济学博士,副教授,河海大学商学院,E-mail:zhuhongbing@hhu.edu.cn.
引用本文:    
朱红兵, 张兵. T+1交易制度对中国股票市场的影响——来自隐含期权价值的新证据[J]. 金融研究, 2025, 535(1): 170-188.
ZHU Hongbing, ZHANG Bing. The Impact of T+1 Trading Mechanism on China's Stock Market——New Evidence Based on Implied Option Values. Journal of Financial Research, 2025, 535(1): 170-188.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V535/I1/170
[1]边江泽和宿铁,2010,《“T+1”交易制度和中国权证市场溢价》,《金融研究》第6期,第143~161页。
[2]陈高才,2016,《高频交易是光大证券 “8·16 事件” 中的黑天鹅吗?——兼论 T+0交易制度在我国证券市场的应用机遇》,《管理世界》第6期,第172~173页。
[3]葛勇和叶德磊,2009,《“T+1”交易对中国股市波动性的影响——基于1992—2008年时间序列数据的实证分析》,《经济论坛》第3期,第45~48页。
[4]韦立坚,2016,《T+0交易制度的计算实验研究》,《管理科学学报》第11期,第90~102页。
[5]熊熊、梁娟、张维等,2016,《T+0交易制度对股票市场质量的影响分析》,《系统科学与数学》第5期,第683~697页。
[6]尹力博和马枭,2021,《异质投资者角力能够预测未来股价吗?——中国A股市场“高开低走”异象研究》,《系统工程理论与实践》第9期,第2239~2255页。
[7]张兵和薛冰,2019,《T+1交易制度下的资产定价模型研究——基于隔夜收益率视角》,《金融论坛》第8期,第3~11页。
[8]张志伟,2015,《试析中国证券市场T+1交易制度改革》,《经济与管理研究》第12期,第62~65页。
[9]赵倩,2017,《T+1交易制度对B股市场波动性和流动性的影响——基于双重差分模型的实证研究》,《中国经贸导刊(理论版)》第14期,第37~42页。
[10]周耿、姜雨潇、范从来等,2018,《T+1 制度对中小投资者保护效果的实验研究》,《中国经济问题》第6期,第62~77页。
[11]朱红兵和张兵,2022,《T+1交易制度如何影响股市投资者利益——基于高频逐笔交易收益分解的研究》,《经济学报》第2期,第166~200页。
[12]朱宏泉、余江和陈林,2016,《异质信念, 卖空限制与股票收益——基于中国证券市场的分析》,《管理科学学报》第7期,第115~126页。
[13]Amihud, Y. 2002. “Illiquidity and Stock Returns: Cross-Section and Time-Series Effects”, Journal of Financial Markets, 5(1): 31~56.
[14]Berkman, H, Koch PD, L Tuttle and YJ Zhang. 2012. “Paying Attention: Overnight Returns and the Hidden Cost of Buying at the Open”, Journal of Financial and Quantitative Analysis, 47(4): 715~741.
[15]Bian, J, Su T and Wang J. 2022. “Non-Marketability and One-Day Selling Lockup”, Journal of Empirical Finance, 65(1): 1~23.
[16]Campbell, JY and Shiller RJ. 1988. “The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors”, The Review of Financial Studies, 1(3): 195~228.
[17]Chaffe Iii, DB. 1993. “Option Pricing as a Proxy for Discount for Lack of Marketability in Private Company Valuations”.Business Valuation Review, 12(4): 182~188.
[18]Chen, X, Liu Y and Zeng T. 2017. “Does the T+1 Rule Really Reduce Speculation? Evidence from Chinese Stock Index Etf”, Accounting & Finance, 57(5): 1287~1313.
[19]Fama, EF and French KR. 1993. “Common Risk Factors in Returns on Stocks and Bonds”, Journal of Financial Economics, 33(1): 3~56.
[20]Gu, M, Kang W and Xu B. 2018. “Limits of Arbitrage and Idiosyncratic Volatility: Evidence from China Stock Market”, Journal of Banking & Finance, 86(1): 240~258.
[21]Guo, M, Li Z and Tu Z. 2012. “A Unique ‘T+1 Trading Rule’ in China: Theory and Evidence”, Journal of Banking & Finance, 36(2): 575~583.
[22]Kuo, W and Li YC. 2011. “Trading Mechanisms and Market Quality: Call Markets Versus Continuous Auction Markets”, International Review of Finance, 11(4): 417~444.
[23]Longstaff, FA. 1995. “How Much Can Marketability Affect Security Values?”, The Journal of Finance, 50(5): 1767~1774.
[24]Qiao, K and Dam L. 2020. “The Overnight Return Puzzle and the‘T+1’ Trading Rule in Chinese Stock Markets”, Journal of Financial Markets, 50(9): 100534.
[25]Scheinkman, JA and Xiong W. 2003. “Overconfidence and Speculative Bubbles”, Journal of Political Economy, 111(6): 1183~1220.
[26]Wu, Y and Qin F. 2015. “Do We Need to Recover T+0 Trading? Evidence from the Chinese Stock Market”, Emerging Markets Finance and Trade, 51(6): 1084~1098.
[27]Xiong, W. 2013. “Bubbles, Crises, and Heterogeneous Beliefs”, NBER Working Paper.
[28]Zhang, B. 2019. “T+1 Trading Mechanism Causes Negative Overnight Return”, Economic Modelling, 89(7): 55~71.
[29]Zhu, H, Yang L and Zhang B. 2024. “Asymmetric Trading Restriction and Return Comovement”, Journal of International Financial Markets, Institutions&Money, 94: 102023.
[1] 谭莹, 王盼, 张勋. 数字金融发展的劳动力迁移效应——来自中国家庭追踪调查的微观证据[J]. 金融研究, 2024, 532(10): 39-57.
[2] 衣昭颖, 柳建华, 马新啸. 客户高质量会计信息与供应商债务违约风险[J]. 金融研究, 2024, 531(9): 77-94.
[3] 顾明, 任蓝翔, 李东旭. 政策规范、同群效应与资本市场震慑——来自A股上市公司随意停牌的证据[J]. 金融研究, 2024, 530(8): 95-112.
[4] 徐亚飞, 孟庆玺. 并购业绩承诺完成质量何以提升?——来自媒体监督的证据[J]. 金融研究, 2024, 528(6): 188-206.
[5] 杨子晖, 张平淼, 林师涵. 股票市场与债券市场的风险联动与预测研究——基于机器学习的前沿视角[J]. 金融研究, 2024, 523(1): 131-149.
[6] 叶彦艺, 刘碧波, 施展. 债务协商、再融资风险与信用债定价 ——来自中国债券市场的证据[J]. 金融研究, 2023, 520(10): 104-124.
[7] 彭凯翔, 陈志武, 袁为鹏. 17至20世纪初中国的商业利率变迁:以金融组织演进为线索的考察[J]. 金融研究, 2023, 516(6): 187-206.
[8] 林兟, 何为, 余剑峰, 熊熊. 公募基金改善了市场定价效率吗?——持股基金质量与股票收益[J]. 金融研究, 2023, 514(4): 149-167.
[9] 杨子晖, 王姝黛, 李东承, 冷铁成. 债务风险传染的多重网络研究[J]. 金融研究, 2023, 513(3): 38-56.
[10] 陈奉功, 张谊浩. 绿色债券发行、企业绿色转型与市场激励效应[J]. 金融研究, 2023, 513(3): 131-149.
[11] 顾明, 曾力, 陈海强, 倪博. 交易限制与股票市场定价效率——基于创业板涨跌幅限制放宽的准自然实验研究[J]. 金融研究, 2022, 509(11): 189-206.
[12] 潘越, 林淑萍, 张鹏东. 专利提前公开的资本市场动因——基于企业被并购压力视角的研究[J]. 金融研究, 2022, 506(8): 189-206.
[13] 张伟平, 曹廷求. 中国房地产企业间系统性风险溢出效应分析——基于尾部风险网络模型[J]. 金融研究, 2022, 505(7): 94-114.
[14] 段丙蕾, 汪荣飞, 张然. 南橘北枳:A股市场的经济关联与股票回报[J]. 金融研究, 2022, 500(2): 171-188.
[15] 孙广宇, 李志辉, 杜阳, 王近. 市场操纵降低了中国股票市场的信息效率吗——来自沪市A股高频交易数据的经验证据[J]. 金融研究, 2021, 495(9): 151-169.
[1] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[2] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[3] 张海洋. 融资约束下金融互助模式的演进——从民间金融到网络借贷[J]. 金融研究, 2017, 441(3): 101 -115 .
[4] 王兰芳, 胡悦. 创业投资促进了创新绩效吗?——基于中国企业面板数据的实证检验[J]. 金融研究, 2017, 439(1): 177 -190 .
[5] 张倩倩, 周铭山, 董志勇. 研发支出资本化向市场传递了公司价值吗?[J]. 金融研究, 2017, 444(6): 176 -190 .
[6] 熊启跃, 赵阳, 廖泽州. 国际化会影响银行的净息差水平么?——来自全球大型银行的经验证据[J]. 金融研究, 2016, 433(7): 64 -79 .
[7] 黄小琳, 朱松, 陈关亭. 劳动投资效率、企业性质与资产收益率[J]. 金融研究, 2017, 441(3): 130 -144 .
[8] 周黎安, 吴敏. 省以下多级政府间的税收分成:特征事实与解释[J]. 金融研究, 2015, 424(10): 64 -80 .
[9] 郭飞, 游绘新, 郭慧敏. 为什么使用外币债务?——中国上市公司的实证证据[J]. 金融研究, 2018, 453(3): 137 -154 .
[10] 王正位, 邓颖惠, 廖理. 知识改变命运:金融知识与微观收入流动性[J]. 金融研究, 2016, 438(12): 111 -127 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1