Please wait a minute...
金融研究  2023, Vol. 521 Issue (10): 186-206    
  本期目录 | 过刊浏览 | 高级检索 |
非正式融资中的文化力量 ——企业文化对商业信用的影响
华秀萍, 程思睿, 李婉宁, 王勇
诺丁汉大学商学院(中国),浙江宁波 315100;
北京大学新结构经济学研究院,北京 100871
The Power of Culture over Informal Financing —The Impact of Corporate Culture on Trade Credit Access by Chinese Listed Firms
HUA Xiuping, CHENG Sirui, LI Wanning, WANG Yong
Nottingham University Business School (China);
Institute of New Structural Economics at Peking University
下载:  PDF (1070KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于A股上市公司的文本数据,使用词向量等机器学习模型,提炼中国企业文化的维度、构建中国特色的企业文化词典,度量了企业文化强度水平,分析了企业文化对商业信用融资水平的影响。研究发现,强企业文化能够帮助企业获得更多商业信用融资。机制分析显示,文化强度较高的企业拥有较低的信用风险水平、较高的未来发展潜力,更加重视产品质量并更依赖商业信用对供应商产品质量实施监督。进一步研究表明,在不同的企业信息透明度、社会信任水平、地区营商环境下,企业文化对商业信用的影响程度存在异质性。本文丰富了中国上市公司企业文化的度量方法与实证分析,为企业的文化建设和价值创造提供了新的见解,也为政府如何引导企业创建强文化、推进文化自信提供了决策参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
华秀萍
程思睿
李婉宁
王勇
关键词:  企业文化  商业信用  文本分析  机器学习    
Summary:  Corporate culture is widely believed to have a significant impact on an organization's performance. It plays a crucial role in shaping corporate identity and improving business performance. Corporate culture encompasses shared values, beliefs, and behaviors that define appropriate behavior by employees. Recent studies show that corporate culture increases resilience to stock price changes and enhances firm performance in crises. Considering the importance of corporate culture, we seek to investigate corporate culture in China and its financial and economic outcomes.
However, corporate culture is subjective and nebulous and lacks an authoritative and convincing definition. Fortunately, the development of big data and machine learning algorithms makes identifying and measuring the strength of corporate culture possible. Using the k-means model, we identify the five most mentioned values from the descriptions of firm values on firms' official webpages and use them to define corporate culture, namely, “integrity,” “innovation,” “hardworking,” “quality,” and “teamwork.” Next, we use the word embedding model to create dictionaries for these values and quantify the strength of corporate culture using annual report textual data.
Financial constraints are a key factor hindering Chinese enterprises' development. Informal financing sources such as trade credit are effective supplementary systems that can alleviate financing issues. Considering the high dependence, informational opacity, and weak regulation that characterize trade credit in China, we focus on how corporate culture influences access to informal financing. We propose that corporate culture is an important strategic “soft asset” for firms and an effective complement to other characteristics in helping firms obtain trade credit.
We propose three channels through which corporate culture influences trade credit access. First, the “integrity” and “hardworking” corporate culture values advocate that employees abide by contracts and commitments, fulfill their obligations, and thereby earn respect, enhance their reputation, and gain trust from creditors. Second, the “innovation” and “teamwork” values emphasize long-term development strategies and induce suppliers or customers to maintain good relationships by providing trade credit, aiming to share business growth in the future. Finally, companies that attach considerable importance to product quality have a strong cultural emphasis on the “quality” value and are inclined to use trade credit to supervise the quality of suppliers' products, thereby improving the overall level of trade credit.
In empirical analyses, we focus on data from Chinese A-share listed companies over the 2012-2021 period. We collect textual data from the Management's Discussion and Analysis section of companies' annual reports and obtain financial data from the China Stock Market and Accounting Research database.
The results of our empirical analyses demonstrate that a strong corporate culture helps companies obtain more trade credit than those lacking such a culture, and that all five dimensions contribute to this effect. This conclusion holds after a series of robustness checks. For the endogeneity issue, we use a two-stage least squares model with two instrumental variables. In a difference-in-differences regression, we use the abnormal departure of the chairperson of the board or CEO as an exogenous shock in a quasi-natural experiment. The results confirm our main findings.
The results of the mechanism analyses indicate that companies with stronger corporate cultures have lower levels of credit risk and higher potential for future development than companies with weaker cultures. In addition, these companies pay more attention to product quality and rely more on trade credit to supervise the quality of their suppliers' products than their counterparts. The results of further analysis show that the effect of corporate culture is more significant in firms with lower information transparency and those located in regions with lower social trust levels and poorer business environments than in other firms.
This article makes three main contributions. First, it introduces a method for measuring the strength of corporate culture in the Chinese setting. Second, by accommodating the unique characteristics of Chinese firms, this article explores the cultural dimensions of most concern for listed companies, enabling a comprehensive study of corporate culture in China. Third, this research enriches the literature on the factors that influence access to trade credit and provides evidence of the positive role of a strong corporate culture in obtaining trade credit, thus offering a new perspective on how companies can alleviate financing constraints.
Keywords:  Corporate Culture    Trade Credit    Text Analysis    Machine Learning
JEL分类号:  G32   M14   O14  
基金资助: * 本文感谢国家社会科学基金重点项目(20AJL017)和一般项目(19BJY252)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  王 勇,经济学博士,副教授,北京大学新结构经济学研究院,E-mail:yongwang@nsd.pku.edu.cn.   
作者简介:  华秀萍,金融学博士,教授,诺丁汉大学商学院(中国),E-mail:Xiuping.Hua@nottingham. edu.cn.
程思睿,金融学博士生,诺丁汉大学商学院(中国),E-mail:Sirui.Cheng@nottingham.edu.cn.
李婉宁,金融学博士,诺丁汉大学商学院(中国),E-mail:Wanning.Li@nottingham.edu.cn.
引用本文:    
华秀萍, 程思睿, 李婉宁, 王勇. 非正式融资中的文化力量 ——企业文化对商业信用的影响[J]. 金融研究, 2023, 521(10): 186-206.
HUA Xiuping, CHENG Sirui, LI Wanning, WANG Yong. The Power of Culture over Informal Financing —The Impact of Corporate Culture on Trade Credit Access by Chinese Listed Firms. Journal of Financial Research, 2023, 521(10): 186-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V521/I10/186
[1]卞泽阳、李志远和徐铭遥,2021,《开发区政策、供应链参与和企业融资约束》,《经济研究》第10期,第88~104页。
[2]陈胜蓝和刘晓玲,2019,《中国城际高铁与商业信用供给——基于准自然实验的研究》,《金融研究》第10期,第117~134页。
[3]戴亦一、肖金利和潘越,2016,《“乡音”能否降低公司代理成本?——基于方言视角的研究》,《经济研究》第12期,第147~160页。
[4]戴亦一、张鹏东和潘越,2019,《老赖越多,贷款越难?——来自地区诚信水平与上市公司银行借款的证据》,《金融研究》 第8期,第77~95页。
[5]董敬畏,2016,《时空抽离与流动人口的文化认同》,《中国社会科学院研究生院学报》第3期,第33~37页。
[6]范勇,1988,《试论我国历史时期人口分布变迁的原因》,《人口研究》第3期,第56~59页。
[7]洪永淼和汪寿阳,2021,《大数据如何改变经济学研究范式?》,《管理世界》第10期,第40~55页。
[8]林毅夫和李永军,2001,《中小金融机构发展与中小企业融资》,《经济研究》第1期,第10~18页。
[9]刘景江、郑畅然和洪永淼,2023,《机器学习如何赋能管理学研究?——国内外前沿综述和未来展望》,《管理世界》第9期,第192~216页。
[10]李志军、张世国、牛志伟、袁文融和刘琪,2021,《中国城市营商环境评价的理论逻辑、比较分析及对策建议》,《管理世界》第5期,第98~112页。
[11]宁博、潘越和汤潮,2022,《地域商会有助于缓解企业融资约束吗?——来自A股民营上市企业的证据》,《金融研究》第2期,第153~170页。
[12]潘健平、潘越和马奕涵,2019,《以“合”为贵?合作文化与企业创新》,《金融研究》第1期,第148~167页。
[13]潘越、宁博、纪翔阁和戴亦一,2019,《民营资本的宗族烙印:来自融资约束视角的证据》,《经济研究》第7期,第94~110页。
[14]潘越,谢玉湘,宁博和梁师赫,2022,《数智赋能、法治化营商环境建设与商业信用融资——来自“智慧法院”视角的经验证据》,《管理世界》第9期,第194~207页。
[15]王艳和阚铄,2014,《企业文化与并购绩效》,《管理世界》第11期,第146~163页。
[16]谢陈昕,叶德珠和叶显,2022,《企业竞争文化与股价崩盘风险》,《管理工程学报》第1期,第111~123页。
[17]赵世林,2002,《论民族文化传承的本质》,《北京大学学报(哲学社会科学版) 》第3期,第10~16页。
[18]Ahern, K.R., D. Daminelli, and C. Fracassi, 2015, “Lost in Translation? The Effect of Cultural Values on Mergers Around the World”, Journal of Financial Economics, 117(1):165~189.
[19]El Ghoul, S., and X.L. Zheng, 2016, “Trade Credit Provision and National Culture”, Journal of Corporate Finance, 41:475~501.
[20]Guiso, L., P. Sapienza, and L. Zingales, 2015, “The Value of Corporate Culture”, Journal of Financial Economics, 117(1):60~76
[21]Hofstede, G., 2001, Culture's Consequences: Comparing Values, Behaviors, Institutions, and Organizations across Nations, Thousand Oaks: SAGE Publish Press.
[22]Kong, D.M., Y. Pan, G.G Tian, and P.D. Zhang, 2020, “CEOs' Hometown Connections and Access to Trade Credit: Evidence from China”, Journal of Corporate Finance, 62:101574.
[23]Lee, Y.W., and J.D. Stowe, 1993, “Product Risk, Asymmetric Information, and Trade Credit” Journal of Financial and Quantitative Analysis, 28(2):285~300.
[24]Li, K., X. Liu, F. Mai, and T. Zhang, 2021a, “The Role of Corporate Culture in Bad Times: Evidence from the COVID-19 Pandemic”, Journal of Financial and Quantitative Analysis, 56(7), pp.2545~2583.
[25]Li, K., F. Mai, R. Shen, and X. Yan, 2021b, “Measuring Corporate Culture Using Machine Learning”, Review of Financial Studies, 34(7):3265~3315.
[26]Long, M.S., I.B. Malitz, and S.A. Ravid, 1993, “Trade Credit, Quality Guarantees, and Product Marketability”, Financial Management, 22(4):117~127.
[27]Song, Y., S. Shi, J. Li, and H. Zhang, 2018, “Directional Skip-Gram: Explicitly Distinguishing Left and Right Context for Word Embeddings”, In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2:175~180.
[28]Wang, Y., H. Farag, and W. Ahmad, 2021, “Corporate Culture and Innovation: A Tale from an Emerging Market”, British Journal of Management, 32(4):1121~1140.
[29]Wu, W., M. Firth, and O.M. Rui, 2014, “Trust and the Provision of Trade Credit”, Journal of Banking & Finance, 39:146~159.
[30]Zingales, L., 2015, “The ‘Cultural Revolution' in Finance”, Journal of Financial Economics, 117(1):1~4.
[1] 成程, 田轩, 徐照宜. 供应链金融与企业效率升级 ——来自上市公司公告与地方政策文件的双重证据[J]. 金融研究, 2023, 516(6): 132-149.
[2] 张一帆, 林建浩, 樊嘉诚. 新闻文本大数据与消费增速实时预测——基于叙事经济学的视角[J]. 金融研究, 2023, 515(5): 152-169.
[3] 王勇, 窦斌, 宋培睿, 何昕晟. 管理层语调偏离会影响投资者决策吗?——基于我国上市公司文本与财务数据的经验研究[J]. 金融研究, 2023, 513(3): 169-187.
[4] 姜富伟, 林奕皓, 马甜. “去刚兑”背景下的企业债券违约风险:机器学习预警和经济机制探究[J]. 金融研究, 2023, 521(10): 85-103.
[5] 陆瑶, 施函青. 我国科技企业融资的决定因素研究——基于科创板企业的机器学习分析[J]. 金融研究, 2022, 507(9): 132-151.
[6] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022, 506(8): 152-170.
[7] 吕怀立, 王文明, 鄢姿俏, 侯亮. 金融政策竞争中性与民营企业融资纾困——来自突发公共卫生事件的准自然实验[J]. 金融研究, 2021, 493(7): 95-114.
[8] 孔东民, 李海洋, 杨薇. 定向降准、贷款可得性与小微企业商业信用——基于断点回归的经验证据[J]. 金融研究, 2021, 489(3): 77-94.
[9] 阮睿, 孙宇辰, 唐悦, 聂辉华. 资本市场开放能否提高企业信息披露质量?——基于“沪港通”和年报文本挖掘的分析[J]. 金融研究, 2021, 488(2): 188-206.
[10] 李哲, 王文翰. “多言寡行”的环境责任表现能否影响银行信贷获取——基于“言”和“行”双维度的文本分析[J]. 金融研究, 2021, 498(12): 116-132.
[11] 陈胜蓝, 刘晓玲. 中国城际高铁与商业信用供给——基于准自然实验的研究[J]. 金融研究, 2019, 472(10): 117-134.
[12] 潘健平, 潘越, 马奕涵. 以“合”为贵?合作文化与企业创新[J]. 金融研究, 2019, 463(1): 148-167.
[13] 陈胜蓝, 刘晓玲. 经济政策不确定性与公司商业信用供给[J]. 金融研究, 2018, 455(5): 172-190.
[14] 彭红枫, 林川. 言之有物:网络借贷中语言有用吗?——来自人人贷借款描述的经验证据[J]. 金融研究, 2018, 461(11): 133-153.
[15] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128-142.
[1] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[2] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[3] 江伟, 底璐璐, 姚文韬. 客户集中度与企业成本粘性——来自中国制造业上市公司的经验证据[J]. 金融研究, 2017, 447(9): 192 -206 .
[4] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[5] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[6] 纪志宏, 曹媛媛. 信用风险溢价还是市场流动性溢价:基于中国信用债定价的实证研究[J]. 金融研究, 2017, 440(2): 1 -10 .
[7] 尹力博, 吴优. 离岸人民币区域影响力研究——基于信息溢出的视角[J]. 金融研究, 2017, 446(8): 1 -18 .
[8] 杜兴强, 谭雪. 国际化董事会、分析师关注与现金股利分配[J]. 金融研究, 2017, 446(8): 192 -206 .
[9] 郭婧, 岳希明. 财政收支因果关系研究文献综述[J]. 金融研究, 2017, 440(2): 179 -196 .
[10] 李锋森. 我国融资融券助涨助跌了吗?——基于波动非对称性视角[J]. 金融研究, 2017, 440(2): 147 -162 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1