Please wait a minute...
金融研究  2023, Vol. 522 Issue (12): 74-93    
  本期目录 | 过刊浏览 | 高级检索 |
全国碳市场的碳排放权配额管理机制设计——基于碳交易和风险对冲的视角
赵思琦, 刘庆富, 杨金强, 李源
复旦大学经济学院,上海 200433;
上海财经大学金融学院,上海 200433
Mechanism Design for Carbon Emissions Allowance in China's Carbon Market
ZHAO Siqi, LIU Qingfu, YANG Jinqiang, LI Yuan
School of Economics, Fudan University;
School of Finance, Shanghai University of Finance and Economics
下载:  PDF (878KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 在全国碳市场运行初期,相关风险的对冲工具不足,本文通过构建理论模型论证了,交易平台根据经济环境进行碳配额管理能产生以下作用:第一,增加高碳排放企业投资碳配额、进行碳价格风险对冲的渠道,降低企业的低碳转型成本。第二,为低碳企业卖出富余碳配额、更好地管理碳配额的价格风险提供了方便,从而有助于提高碳市场的流动性,夯实碳市场的价格发现功能。第三,碳配额管理下的碳排放稳态水平约束了发电行业碳排放总量,碳排放的动态演化为“碳达峰”动态路径提供参考。研究表明,在碳配额管理机制下,加大逆周期财政支持力度、开发碳衍生品、推动减排技术突破,都是缓解碳配额价格风险和实现“双碳”目标的有效手段。本文为研究碳配额管理的机制设计及影响提供了新的分析框架,同时也给出碳市场助力推动经济发展方式“绿色转型”的可行措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思琦
刘庆富
杨金强
李源
关键词:  碳交易  机制设计  风险分担  绿色金融    
Summary:  Achieving China's international commitment to “carbon peak” and “carbon neutrality” at a lower social emission reduction cost is the goal of the carbon emissions allowance (CEA) trading market and a central issue in the field of green finance. In 2023, the Central Financial Work Conference emphasized that one of the key channels for providing high-quality financial services is to dedicate more resources to promoting “green development.” Although the CEA trading market has significantly reduced the carbon emissions of the power industry, investors' weak incentive to participate in trading CEA has hindered the discovery of CEA prices. Little theoretical literature explores how to manage CEA to improve the function of CEA price discovery. However, the answer to this question should form the basis from which the CEA trading market can effectively promote green development.
CEA trading originates from the Coase property rights theory, which states that after property rights are clarified, pollution rights trading is the most effective way to solve environmental pollution problems through the market. In terms of the initial allocation of CEA quotas, the Ministry of Ecology and Environment in China has introduced the “2019-2020 National Carbon Emission Trading Quota Setting and Allocation Implementation Plan (Power Industry).” However, this allocation method does not consider uncertainties. Uncertainties affect the demand for CEA quotas, leading to excessively low or high carbon prices, which not only damages corporate value (“transformation risk”) but also squeezes out low-carbon transformation investment. In addition, the lack of risk hedging tools related to CEA assets (“incomplete market”) makes it more difficult to manage CEA price risk. If the CEA trading platform shared the transformation risk by managing CEA quotas, investors would be more willing to participate in CEA trading, and the costs of low-carbon transformation for enterprises would decrease. From a theoretical perspective, three questions remain unanswered. First, how should the trading platform manage CEA in the incomplete market? Second, what are the mechanisms through which CEA management affects carbon prices and corporate decision-making? Third, what measures can help enterprises achieve green and low-carbon transformation and control carbon price risk?
To address the above questions, we build a risk management model that integrates firms with heterogeneous emissions intensity, CEA trading, and market incompleteness based on dynamic inventory management theory. First, we use dynamic programming techniques to elucidate the logic behind optimal decision-making for firms and the trading platform. Second, through numerical analysis, we shed light on the risk-sharing of CEA management, carbon price formation mechanisms, and carbon reduction incentive provision. Finally, we explore the impact of advancements in emissions reduction technologies and the establishment of carbon price floors. This analysis helps provide policy recommendations.
We identify three main functions of the CEA management mechanism. First, it provides a channel for high-carbon-emissions enterprises to invest in CEA quotas and hedge carbon price risks, which reduces the cost of low-carbon transformation. Second, it allows low-carbon enterprises to sell surplus CEA quotas and thus manage CEA price risks more effectively. Third, the steady-state level of CEA quotas constrains the total carbon emissions of the power industry, and the dynamic evolution of carbon emissions provides a reference for the dynamic path toward achieving carbon peak.
We make three key contributions to the literature. First, we combine the Coase property rights theory and dynamic inventory management theory, integrate the opinion equating the essence of inventory management with risk management into the design of the carbon quota management mechanism, and point out how the government (i.e., CEA trading platform) and enterprises can reasonably share risk in an incomplete market through CEA management. Second, three measures can be taken to simultaneously achieve low-carbon production and controllable market risks. The first measure is to increase counter-cyclical fiscal support for the trading platform, which can substantially enhance the risk-taking ability of the platform. Consequently, this measure can not only increase the value of carbon allowance investment but also accelerate the green transformation of enterprises. The second measure involves allocating more financial resources to carbon trading. Financial institutions can provide enterprises with professional services such as carbon trading consulting and custody, which can enhance enterprises' ability to suffer risk. Furthermore, developing CEA forwards and swaps and other derivatives helps enterprises hedge transformation risks. The third measure is government introduction of tax reduction policies to incentivize emissions reduction technology innovation and the implementation of differentiated policies for high-carbon enterprises and low-carbon enterprises, which would help to fully realize the synergistic effect of different enterprises in reducing emissions. Finally, the interactive effect between open market operations and price control plays a crucial role when implementing the CEA adjustment policy. For example, a price limitation policy could encourage low carbon production and reduce the market risk in the short run, but it would break the risk-sharing mechanism, resulting in platform bankruptcy risk.
Keywords:  Carbon Trading    Mechanism Design    Risk-Sharing    Fiscal Sustainability
JEL分类号:  D81   O44   Q58  
基金资助: * 本文感谢国家自然科学基金面上项目(72072108,71972122)、国家自然科学基金专项项目(72342021)、国家重点研发计划(2021YFC3340703)、中国博士后科学基金面上项目(720824)、 中央高校基本科研业务费专项资金(CXJJ-2023-312)的资助。感谢匿名审稿人和编辑部的宝贵意见,文责自负。
通讯作者:  杨金强,经济学博士,教授,上海财经大学金融学院,E-mail:yang.jinqiang@mail.shufe.edu.cn.   
作者简介:  赵思琦,经济学博士,博士后,复旦大学经济学院,E-mail:zhaosiqi.shufe@gmail.com.
刘庆富,管理学博士,教授,复旦大学经济学院,E-mail:liuqf@fudan.edu.cn.
李 源,博士研究生,上海财经大学金融学院,E-mail:yuanli4911@163.com.
引用本文:    
赵思琦, 刘庆富, 杨金强, 李源. 全国碳市场的碳排放权配额管理机制设计——基于碳交易和风险对冲的视角[J]. 金融研究, 2023, 522(12): 74-93.
ZHAO Siqi, LIU Qingfu, YANG Jinqiang, LI Yuan. Mechanism Design for Carbon Emissions Allowance in China's Carbon Market. Journal of Financial Research, 2023, 522(12): 74-93.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V522/I12/74
[1] 龚锋和余锦亮,2015,《人口老龄化、税收负担与财政可持续性》,《经济研究》第8期,第16~30页。
[2] 刘自敏、朱朋虎、杨丹和冯永晟,2020,《交叉补贴、工业电力降费与碳价格机制设计》,《经济学(季刊)》第2期,第709~730页。
[3] 钱浩祺、吴力波和任飞州,2019,《从“鞭打快牛”到效率驱动:中国区域间碳排放权分配机制研究》,《经济研究》第3期,第86~102页。
[4] 王博和徐飘洋,2021,《碳定价、双重金融摩擦与“双支柱”调控》,《金融研究》第12期,第57~74页。
[5] 王文举和陈真玲,2019,《中国省级区域初始碳配额分配方案研究——基于责任与目标、公平与效率的视角》,《管理世界》第3期,第81~98页。
[6] 曾诗鸿、贾婧敏、姚树洁、韦开蕾和钟震,2023,《基于Copula模型的中国碳市场叠加风险度量》,《金融研究》第3期,第93~111页。
[7] 张海和杨招军,2012,《担保换股权与中小企业家消费融资选择》,《经济研究》第S1期,第105~116页。
[8] 张希良,2017,《国家碳市场总体设计中几个关键指标之间的数量关系》,《环境经济研究》第3期,第1~5+48页。
[9] 张希良、张达和余润心,2021,《中国特色全国碳市场设计理论与实践》,《管理世界》第8期,第80~95页。
[10] 朱帮助、唐隽捷、江民星和王平,2022,《基于系统动力学的碳市场风险模拟与调控研究》,《系统工程理论与实践》第7期,第1859~1872页。
[11] Blanchard O J. 1990. “Suggestions for A New Set of Fiscal Indicators”, OECD Economics Department Working Paper, No. 79.
[12] Blanchard, O. 2019. “Public Debt and Low Interest Rates”, American Economic Review, 109(4): 1197~1229.
[13] Bolton, P., Chen, H. and Wang, N. 2011. “A Unified Theory of Tobin's q, Corporate Investment, Financing, and Risk Management”, Journal of Finance, 66(5): 1545~1578.
[14] Calvo, G. A., and Reinhart, C. M. 2002. “Fear of Floating”, Quarterly Journal of Economics, 117(2): 379~408.
[15] DeMarzo, P., He, Z. and Tourre, F. 2023. “Sovereign debt ratchets and welfare destruction”, Journal of Political Economy, 131(10): 2825~2892.
[16] Dumas, B. 1991. “Super Contact and Related Optimality Conditions”, Journal of Economic Dynamics and Control, 15(4): 675~685.
[17] Goulder, L. H., Long, X., Lu, J. and Morgenstern, R. D. 2022. “China's Unconventional Nationwide CO2 Emissions Trading System: Cost-Effectiveness and Distributional Impacts”, Journal of Environmental Economics and Management, 111, 102561.
[18] Goulder, L. H., and Morgenstern, R. D. 2018. “China's Rate-Based Approach to Reducing CO2 Emissions: Attractions, Limitations, and Alternatives”, AEA Papers and Proceedings, 108: 458~462.
[19] Jiang, W., Sargent, T. J., Wang, N. and Yang, J. 2022. “A p Theory of Government Debt and Taxes,” NBER Working Paper, No. w29931.
[20] Jorgenson, D. W. 1963. “Capital Theory and Investment Behavior”, American Economic Review, 53(2): 247~259.
[21] Kollenberg, S., and Taschini, L. 2019. “Dynamic Supply Adjustment and Banking under Uncertainty in An Emission Trading Scheme: The Market Stability Reserve”, European Economic Review, 118: 213~226.
[22] Newell, R. G., and Pizer, W. A. 2008. “Indexed Regulation”, Journal of Environmental Economics and Management, 56(3): 221~233.
[23] Pizer, W. A., and Zhang, X. 2018. “China's New National Carbon Market”, AEA Papers and Proceedings,108: 463~467.
[24] Rebelo, S., Wang, N. and Yang, J. 2022. “Rare disasters, financial development, and sovereign debt”, The Journal of Finance, 77(5): 2719~2764.
[25] Willner, M., and Perino, G. 2022. “Beyond Control: Policy Incoherence of the EU Emissions Trading System”, Politics and Governance, 10(1): 256~264.
[1] 方意, 刘江龙. 银行关联性与系统性金融风险:传染还是分担?[J]. 金融研究, 2023, 516(6): 57-74.
[2] 文书洋, 刘浩, 王慧. 绿色金融、绿色创新与经济高质量发展[J]. 金融研究, 2022, 506(8): 1-17.
[3] 金祥义, 张文菲, 施炳展. 绿色金融促进了中国出口贸易发展吗?[J]. 金融研究, 2022, 503(5): 38-56.
[4] 魏晓云, 韩立岩. 绿色PPP项目组合的最优契约:经济与环境效应的福利视角[J]. 金融研究, 2022, 501(3): 60-78.
[5] 陈国进, 丁赛杰, 赵向琴, 蒋晓宇. 中国绿色金融政策、融资成本与企业绿色转型——基于央行担保品政策视角[J]. 金融研究, 2021, 498(12): 75-95.
[6] 王博, 徐飘洋. 碳定价、双重金融摩擦与“双支柱”调控[J]. 金融研究, 2021, 498(12): 57-74.
[7] 李哲, 王文翰. “多言寡行”的环境责任表现能否影响银行信贷获取——基于“言”和“行”双维度的文本分析[J]. 金融研究, 2021, 498(12): 116-132.
[8] 文书洋, 张琳, 刘锡良. 我们为什么需要绿色金融?——从全球经验事实到基于经济增长框架的理论解释[J]. 金融研究, 2021, 498(12): 20-37.
[9] 潘冬阳, 陈川祺, Michael Grubb. 金融政策与经济低碳转型——基于增长视角的研究[J]. 金融研究, 2021, 498(12): 1-19.
[10] 苏冬蔚, 连莉莉. 绿色信贷是否影响重污染企业的投融资行为?[J]. 金融研究, 2018, 462(12): 123-137.
[11] 刘伟, 许宪春, 汤美微. 国民经济核算视角下的保险产出及中国的实证[J]. 金融研究, 2018, 460(10): 174-188.
[12] 毛 捷, 吉 黎, 赵忠秀. 亏损抵扣、风险分担与企业投资——“沉睡合伙人”假说的经验证据[J]. 金融研究, 2016, 436(10): 174-189.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[3] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
[4] 江伟, 底璐璐, 姚文韬. 客户集中度与企业成本粘性——来自中国制造业上市公司的经验证据[J]. 金融研究, 2017, 447(9): 192 -206 .
[5] 杜兴强, 谭雪. 国际化董事会、分析师关注与现金股利分配[J]. 金融研究, 2017, 446(8): 192 -206 .
[6] 冯根福, 刘虹, 冯照桢, 温军. 股票流动性会促进我国企业技术创新吗?[J]. 金融研究, 2017, 441(3): 192 -206 .
[7] 戴严科, 林曙. 利率波动、融资约束与存货投资——来自中国制造业企业的证据[J]. 金融研究, 2017, 442(4): 95 -111 .
[8] 耿志祥, 孙祁祥. 人口老龄化、延迟退休与二次人口红利[J]. 金融研究, 2017, 439(1): 52 -68 .
[9] 韩立岩, 蔡立新, 尹力博. 中国证券市场的绿色激励:一个四因素模型[J]. 金融研究, 2017, 439(1): 145 -161 .
[10] 薛爽, 赵泽朋, 王迪. 企业排污的信息价值及其识别——基于钢铁企业空气污染的研究[J]. 金融研究, 2017, 439(1): 162 -176 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1