Please wait a minute...
金融研究  2025, Vol. 535 Issue (1): 20-38    
  本期目录 | 过刊浏览 | 高级检索 |
违约风险国际传染研究——基于前沿非对称断点技术的新应用
杨子晖, 李雅茜, 王姝黛
上海财经大学金融学院/滴水湖高级金融学院,上海 200120;
中山大学岭南学院,广东广州 510275;
广东外语外贸大学金融学院/金融开放与资产管理研究中心,广东广州 510006
Global Contagion of Default Risk: A New Application Based on Cutting-Edge Asymmetric Breakpoint Technology
YANG Zihui, LI Yaxi, WANG Shudai
School of Finance, Shanghai University of Finance and Economics;
Dishui Lake Advanced Finance Institute, Shanghai University of Finance and Economics;
Lingnan College, Sun Yat-Sen University;
School of Finance, Guangdong University of Foreign Studies;
Institute of Financial Openness and Asset Management, Guangdong University of Foreign Studies
下载:  PDF (2039KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,全球债务规模快速攀升,局部市场的违约风险极易沿贸易、投资、信贷渠道交叉传染,进而对各国经济的平稳发展造成潜在冲击。在此背景下,本文使用1995年至2022年23个国家(地区)、11个行业的违约概率,结合前沿的非对称断点方法,构建国际违约风险的正向、负向关联矩阵,考察违约风险在跨市场、跨行业传导过程中的风险共振与风险分散。分析发现,金融业拥有较高的违约风险跨市场正向关联,是阻断风险传染链条的关键所在;而公共事业、日常消费业的跨市场风险动态则呈现负向联动特征,它们能够在国际资产组合中起到风险分散的作用。同时,中国内地与日本、中国香港的违约风险存在显著的正向关联,东亚市场可能成为国际违约风险向中国内地跨境传染的“中转站”。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨子晖
李雅茜
王姝黛
关键词:  违约风险  行业风险传染  非对称断点方法  风险防范    
Summary:  Recently, the scale of global debt has been continuously expanding. The fluctuations in default risk within local markets can spread rapidly across different markets and industries along trade, investment, and credit channels, posing potential threats to the stable development of various countries. In response, the Central Financial Work Conference held in October 2023 pointed out the necessity to “establish a long-term mechanism to prevent and defuse local debt risks” and to “prevent the cross-region, cross-market and cross-border transmission of risks”. In this context, it is of great academic value and practical significance to study the co-movement and diversification effect of international default risk in cross-market and cross-industry transmission. It not only contributes to identifying the co-movements of default risks across different markets, but also helps to find the weak links with large default risk exposure and vulnerability to external shocks, thus providing policy implications for realizing China's financial stability and high-quality economic development.
Based on the asymmetric breakpoint method, this paper adopts the default probabilities of corporate sectors in 23 countries (or regions) and 11 industries from 1995 to 2022 to construct global default risk networks, and then we capture the effects of default risk co-movement and default risk diversification respectively. The default probability data we use come from the Credit Research Initiative of the Asian Institute of Digital Finance, National University of Singapore (NUS-CRI).
Firstly, this paper constructs a static default risk network and studies the default risk contagion at country (or region) level. The results suggest that the Chinese mainland demonstrates strong resilience to externally transmitted default risk. At the same time, the default risk of the Chinese mainland's corporate sector shows a low correlation with the international market, and its risk dynamic is significantly influenced by domestic factors. Furthermore, this paper calculates the net relative centrality of each country (or region), revealing that the top three markets (Hong Kong SAR, China, Singapore, and the United Kingdom) all have international financial centers, and the financial sector may be an important hub for cross-market contagion of default risk.
Next, this paper uses industry-level default probability to measure the cross-market contagion of default risk within each industry and the cross-industry contagion of default risk within each country (or region). We find that the positive co-movement effect is very significant in financial industry. Hence, financial sector is the key to breaking the chain of risk contagion. Nevertheless, the cross-market risk dynamics of utilities and consumer staples show a negative diversification effect, indicating these industries' potential value in international portfolio risk diversification.
Furthermore, this paper adopts the rolling estimation method to capture the dynamic evolution of the default risk network from February 1996 to June 2022. The results show that the impact of external shocks on positive and negative connection networks is asymmetric. Moreover, the trend in the density of positive connection network mirrors the trend in the number of global corporate defaults, which indicates that default events may be an important force driving the contagion of default risks.
In addition, this paper studies the default risk contagion under three global crisis events, namely Global Financial Crisis, European Sovereign Debt Crisis and the COVID-19 pandemic crisis. We find that the strength of positive co-movement of default risk rises significantly during the events mentioned above. The research on industry high risk period indicates that the rising risks in real estate sector in the Chinese mainland will increase risk co-movement among major domestic industries, but do not cause risk spillover to international markets. In contrast, a surge in risk of the U.S. real estate sector could trigger a positive linkage of global default risk. Further analysis of the high-risk period in the U.S. information technology industry shows that the negative impact of the risk in the U.S. information technology industry on the Chinese mainland is relatively limited.
Finally, this paper proposes several policy recommendations to guard against the default risk contagion. First, the default risk of financial industry should be closely monitored, and the national financial risk early warning system should be further improved. Second, policymakers should keep a wary eye on overseas risks and pay close attention to the fluctuation of default risks in East Asia. Third, regulators should make emergency response plans for domestic default events and ensure systemic risk in China under control.
Keywords:  Default Risk    Industry Risk Contagion    Asymmetric Breakpoint Method    Risk Prevention
JEL分类号:  G15   C58   F34  
基金资助: * 本文感谢国家社会科学基金项目(23VRC077)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  李雅茜,博士研究生,中山大学岭南学院,E-mail:liyx226@mail2.sysu.edu.cn.   
作者简介:  杨子晖,经济学博士,教授,上海财经大学金融学院/滴水湖高级金融学院,E-mail:youngzhui@163.com. 王姝黛,经济学博士,副教授,广东外语外贸大学金融学院/金融开放与资产管理研究中心,E-mail:wangshd6@163.com.
引用本文:    
杨子晖, 李雅茜, 王姝黛. 违约风险国际传染研究——基于前沿非对称断点技术的新应用[J]. 金融研究, 2025, 535(1): 20-38.
YANG Zihui, LI Yaxi, WANG Shudai. Global Contagion of Default Risk: A New Application Based on Cutting-Edge Asymmetric Breakpoint Technology. Journal of Financial Research, 2025, 535(1): 20-38.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V535/I1/20
[1]方意和刘江龙,2023,《银行关联性与系统性金融风险:传染还是分担?》,《金融研究》第6期,第57~74页。
[2]李政、刘淇和鲁晏辰,2020,《主权债务风险跨国溢出研究——来自频域的新证据》,《金融研究》第9期,第59~77页。
[3]李志生、苏诚、李好和孔东民,2018,《企业过度负债的地区同群效应》,《金融研究》第9期,第74~90页。
[4]谭小芬、耿亚莹和苟琴,2024,《跨境资本流动、信贷配置风险与银行体系稳定》,《经济研究》第1期,第129~147页。
[5]王博、李力和郝大鹏,2019,《货币政策不确定性、违约风险与宏观经济波动》,《经济研究》第3期,第119~134页。
[6]杨子晖和陈雨恬,2023,《财政金融统一框架下的金融风险测度与分析——基于非线性网络关联的方法》,《中国社会科学》第11期,第125~144页。
[7]杨子晖、张平淼和陈雨恬,2021,《风险共振还是风险分散?——基于尾部事件下风险结构的关联研究》,《经济学(季刊)》第6期,第2127~2152页。
[8]张浩,2018,《我国信用债市场风险的特征、影响及对策研究》,《南方金融》第1期,第57~67页。
[9]Ando, T., M. Greenwood-Nimmo and Y. Shin, 2022, “Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks”, Management Science, 68(4), pp. 2401~2431.
[10]Berger, A. N., O. Guedhami, H. H. Kim and X. Li, 2022, “Economic Policy Uncertainty and Bank Liquidity Hoarding”, Journal of Financial Intermediation, 49, 100893.
[11]Chen, C. Y., W. K. Härdle and Y. Okhrin, 2019, “Tail Event Driven Networks of SIFIs”, Journal of Econometrics, 208(1), pp. 282~298.
[12]Costello, A. M., 2020, “Credit Market Disruptions and Liquidity Spillover Effects in the Supply Chain”, Journal of Political Economy, 128(9), pp. 3434~3468.
[13]Duffie, D., 2019, “Prone to Fail: The Pre-Crisis Financial System”, Journal of Economic Perspectives, 33(1), pp. 81~106.
[14]Feng, Q., Y. Wang, X. Sun, J. Li, K. Guo and J. Chen, 2023, “What Drives Cross-Border Spillovers among Sovereign CDS, Foreign Exchange and Stock Markets?”, Global Finance Journal, 56, 100773.
[15]Greenwood-Nimmo, M., V. H. Nguyen and Y. Shin, 2023, “What Is Mine Is Yours: Sovereign Risk Transmission During the European Debt Crisis”, Journal of Financial Stability, 65, 101103.
[16]Hale, G., T. Kapan, C. Minoiu and P. Strahan, 2020, “Shock Transmission through Cross-Border Bank Lending: Credit and Real Effects”, The Review of Financial Studies, 33(10), pp. 4839~4882.
[17]Kaviani, M. S., L. Kryzanowski, H. Maleki and P. Savor, 2020, “Policy Uncertainty and Corporate Credit Spreads”, Journal of Financial Economics, 138(3), pp. 838~865.
[18]Xu, Q., H. Yan and T. Zhao, 2022, “Contagion Effect of Systemic Risk Among Industry Sectors in China's Stock Market”, The North American Journal of Economics and Finance, 59, 101576.
[19]Yfanti, S., M. Karanasos, C. Zopounidis and A. Christopoulos, 2023, “Corporate Credit Risk Counter-Cyclical Interdependence: A Systematic Analysis of Cross-Border and Cross-Sector Correlation Dynamics”, European Journal of Operational Research, 304(2), pp. 813~831.
[1] 衣昭颖, 柳建华, 马新啸. 客户高质量会计信息与供应商债务违约风险[J]. 金融研究, 2024, 531(9): 77-94.
[2] 魏晓云, 韩立岩. 环境规制、绿色技术创新与违约风险[J]. 金融研究, 2024, 528(6): 169-187.
[3] 梁上坤, 王思超, 董青, 谢志华. 地方政府财政压力与企业违约风险[J]. 金融研究, 2024, 528(6): 78-96.
[4] 牛晓健, 强皓凡, 吕斌, 王聪. 企业跨界竞争与债务违约风险——基于机器学习与复杂网络方法[J]. 金融研究, 2024, 525(3): 150-168.
[5] 姜富伟, 林奕皓, 马甜. “去刚兑”背景下的企业债券违约风险:机器学习预警和经济机制探究[J]. 金融研究, 2023, 520(10): 85-103.
[6] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022, 506(8): 152-170.
[7] 谢德仁, 刘劲松. 自由现金流量创造力与违约风险——来自A股公司的经验证据[J]. 金融研究, 2022, 510(12): 168-186.
[8] 邓路, 刘欢, 侯粲然. 金融资产配置与违约风险:蓄水池效应,还是逐利效应?[J]. 金融研究, 2020, 481(7): 172-189.
[9] 江嘉骏, 高铭, 卢瑞昌. 网络借贷平台风险:宏观驱动因素与监管[J]. 金融研究, 2020, 480(6): 152-170.
[10] 封思贤, 那晋领. P2P借款人的定价偏差与被动违约风险——基于“人人贷”数据的分析[J]. 金融研究, 2020, 477(3): 134-151.
[11] 许红梅, 李春涛. 劳动保护、社保压力与企业违约风险——基于《社会保险法》实施的研究[J]. 金融研究, 2020, 477(3): 115-133.
[12] 宋全云, 李晓, 钱龙. 经济政策不确定性与企业贷款成本[J]. 金融研究, 2019, 469(7): 57-75.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[3] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[4] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
[5] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[6] 项后军, 闫玉. 理财产品发展、利率市场化与银行风险承担问题研究[J]. 金融研究, 2017, 448(10): 99 -114 .
[7] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1 -17 .
[8] 张靖佳, 孙浦阳, 古芳. 欧洲量化宽松政策对中国企业出口影响——一个汇率网状溢出效应视角[J]. 金融研究, 2017, 447(9): 18 -34 .
[9] 严成樑. 延迟退休、财政支出结构调整与养老金替代率[J]. 金融研究, 2017, 447(9): 51 -66 .
[10] 史永东, 王龑. 职务犯罪是否加剧了银行风险?——来自中国城商行和农商行的经验证据[J]. 金融研究, 2017, 447(9): 99 -114 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1