Please wait a minute...
金融研究  2021, Vol. 495 Issue (9): 151-169    
  本期目录 | 过刊浏览 | 高级检索 |
市场操纵降低了中国股票市场的信息效率吗——来自沪市A股高频交易数据的经验证据
孙广宇, 李志辉, 杜阳, 王近
浙江工商大学金融学院,浙江杭州 310018;
南开大学经济学院,天津 300071;
中国银行研究院,北京 100818;
兴业基金管理有限公司风险管理部,上海 200120
Does Market Manipulation Reduce the Information Efficiency of China's Stock Market? Empirical Evidence from the Shanghai A-share Market's High-Frequency Trading Data
SUN Guangyu, LI Zhihui, DU Yang, WANG Jin
School of Finance, Zhejiang Gongshang University;
School of Economics, Nankai University;
Research Institute of Bank of China;
CIB Fund Management Co., Ltd
下载:  PDF (535KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文以尾市交易操纵为研究对象,尝试对中国股票市场可疑的尾市操纵行为进行识别与监测,并基于监测结果实证分析市场操纵如何影响市场信息效率。具体来看,本文利用沪市A股2013-2018年的日内高频交易数据,基于股票尾市交易相关指标异常变化特征,构建了尾市交易操纵识别模型,实证检验了市场操纵对信息效率的影响。研究结果表明,市场操纵对信息效率存在不利影响,市场操纵后股票流动性和股票波动性的异常变化是影响信息效率的关键传导路径,上述结论在考虑内生性问题后依然稳健。此外,研究还发现,国有企业、上市公司信息披露质量较高的情形下,市场操纵对信息效率不利影响程度较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙广宇
李志辉
杜阳
王近
关键词:  市场操纵  尾市交易操纵  信息效率  股票流动性  股票波动性    
Summary:  Tremendous increases in scale have been achieved in the development of China's A-share market over the past 30 years. At the end of 2020, there were 4,154 listed companies in the A-share market, and the total value of the market was 80 trillion yuan. This equates to greater than 70% of China's 2020 GDP, meaning that the A-share market is the world's second largest stock market, after that of the United States. However, the frequent abnormal fluctuations that have occurred in the A-share market indicate that the quality of the market is not high.
In particular, there have been continual illegal transactions in the stock market in recent years:China Securities Regulatory Commission reports that the illegal profits from market manipulation in 2020 totaled 416 million yuan. Clearly, such occurrences severely damage the legitimate rights and interests of investors and the healthy development of the capital market. To explore this illegal behavior from the perspective of stock market quality, we monitor and attempt to identify suspicious tail-market manipulation in China's stock market. Based on the results of this monitoring, we empirically analyze how market manipulation affects the information efficiency of China's stock market and suggest ways for regulatory authorities to improve market quality.
Many studies explore the factors influencing information efficiency in the Chinese stock market. Recent studies explore these factors from the perspective of investors and find that institutional investors (Xin et al., 2018), foreign investors (Qinlin and Zhengfei, 2018), and investor sentiment (Yang et al., 2020; Xiong et al., 2020) are responsible for abnormal changes in information efficiency. However, scholars rarely analyze the relationship between market manipulation and information efficiency from the perspective of illegal traders. This is a crucial relationship to understand, as the capital advantage and shareholding advantage of market manipulators means that their manipulations have a profound effect on the formation of stock prices. In addition, market microstructure theory (O’Hara, 1995) holds that the process of formation of security prices is closely related to the type of traders involved. Thus, in the process of stock-price formation, market manipulators may either (i) play the role of informed traders, whereby they use information advantages to bring stock prices closer to their intrinsic values through value investment, which increases information efficiency, or (ii) play the role of uninformed traders, whereby they use capital advantages and shareholding advantages to speculate on stock prices to cause them to deviate from their intrinsic values, which decreases information efficiency. Therefore, it may be unclear how market manipulation affects information efficiency.
Accordingly, in this paper, we explore whether market manipulation is necessarily harmful and the mechanism by which market manipulation affects information efficiency. Specifically, we use the daily high-frequency trading data of the Shanghai A-share market from 2013 to 2018 as a research sample. Then, based on the abnormal characteristics of stock-trading indicators in this sample, we construct a model to identify tail-trading manipulation and empirically test the effect of market manipulation on the information efficiency of stock prices. From these investigations, we obtain the following findings. (1) Market manipulation has an adverse effect on information efficiency, primarily via abnormal changes in stock liquidity and volatility after market manipulation. These findings remain stable after controlling endogeneity. (2) Manipulation has less adverse effects on the information efficiency when the enterprise is state-owend or have a high quality of information disclosure.
Our findings on the adverse effects of market manipulation on information efficiency indicate that financial regulatory authorities should improve market-monitoring and early-warning systems, and increase penalties for violations.
Keywords:  Market Manipulation    Tail Trading Manipulation    Information Efficiency    Stock Liquidity    Stock Volatility
JEL分类号:  G14   G12   G10  
基金资助: * 本文感谢国家自然科学基金面上项目(71973070)、国家社会科学基金青年项目(18CJY058)、北京市社会科学基金青年项目(19YJC038)的资助。作者感谢匿名评审专家的宝贵意见,文责自负。
通讯作者:  孙广宇,经济学博士,讲师,浙江工商大学金融学院,E-mail:sgyu00@163.com.   
作者简介:  李志辉,经济学博士,教授,南开大学经济学院,E-mail:zhli@nankai.edu.cn.
杜 阳,经济学博士,博士后,中国银行研究院,E-mail:nkduyang@163.com.
王 近,经济学博士,兴业基金管理有限公司风险管理部, E-mail:wangjin_nku@163.com.
引用本文:    
孙广宇, 李志辉, 杜阳, 王近. 市场操纵降低了中国股票市场的信息效率吗——来自沪市A股高频交易数据的经验证据[J]. 金融研究, 2021, 495(9): 151-169.
SUN Guangyu, LI Zhihui, DU Yang, WANG Jin. Does Market Manipulation Reduce the Information Efficiency of China's Stock Market? Empirical Evidence from the Shanghai A-share Market's High-Frequency Trading Data. Journal of Financial Research, 2021, 495(9): 151-169.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2021/V495/I9/151
[1] 程昕、杨朝军和万孝园,2018,《机构投资者、信息透明度与股价波动》,《投资研究》第6期,第55~77页。
[2] 樊纲、王小鲁和朱恒鹏,2011,《中国市场化指数:各地区市场化相对进程2011年报告》,经济科学出版社。
[3] 方立兵和丁婧,2017,《透明度与市场效率——基于信息不对称的适应性学习研究》,《管理科学学报》第7期,第43~56页。
[4] 何兴强和周开国,2006,《牛、熊市周期和股市间的周期协同性》,《管理世界》第4期,第35~40页。
[5] 黄灿、李善民和庄明明等,2017,《内幕交易与股价同步性》,《管理科学》第6期,第3~18页。
[6] 孔东民、王茂斌和赵婧,2011,《订单型操纵的新发展及监管》,《证券市场导报》第1期,第 16~23页。
[7] 李斌和汪寿阳,2012,《价格发现速度与流动性》,《系统管理学报》第6期,第 765~770页。
[8] 李梦雨,2015,《中国股票市场操纵行为及预警机制研究》,《中央财经大学学报》第10期,第32~42页。
[9] 李梦雨和李志辉,2019,《市场操纵与股价崩盘风险——基于投资者情绪的路径分析》,《国际金融研究》第 4期,第87~96页。
[10] 李锋森,2019,《股市异常波动期间限制卖空机制的效果研究——基于2015年A股市场的自然实验》,《金融监管研究》第9期,第51~65页。
[11] 李善民、黄灿和史欣向,2015,《信息优势对企业并购的影响:基于社会网络的视角》,《中国工业经济》第11期,第141~155页。
[12] 李洋、王春峰和向健凯等,2020,《交易者有限理性、信息披露质量与价格发现效率》,《系统工程理论与实践》第7期,第1682~1693页。
[13] 李志辉、王近和李梦雨,2018,《中国股票市场操纵对市场流动性的影响研究——基于收盘价操纵行为的识别与监测》,《金融研究》第2期,第135~152页。
[14] 李志辉和王近,2018,《中国股票市场操纵对市场效率的影响研究》,《南开经济研究》第2期,第 56~71页。
[15] 李志辉和孙广宇,2020,《中国股票市场内幕交易对信息效率的影响——基于内幕交易行为的识别与监测》,《南开学报》第5期,第136~145页。
[16] 李志生、陈晨和林秉旋,2015,《卖空机制提高了中国股票市场的定价效率吗?——基于自然实验的证据》,《经济研究》第4期,第165~177页。
[17] 马丹、王春峰和房振明,2020,《流动性供给与日内价格效率——基于中国股票市场的实证研究》,《中国管理科学》第7期,第57~67页。
[18] 肖浩、夏新平和邹斌,2011,《信息性交易概率与股价同步性》,《管理科学》第4期,第84~94页。
[19] 熊熊、许克维和沈德华,2020,《投资者情绪与期货市场功能——基于沪深300股指期货的研究》,《系统工程理论与实践》第9期,第2252~2268页。
[20] 伊志宏、李颖和江轩宇,2015,《女性分析师关注与股价同步性》,《金融研究》第11期,第175~189页。
[21] 余峰燕、郝项超和梁琪,2012,《媒体重复信息行为影响了资产价格么》,《金融研究》第10期,第 139~152页。
[22] 张程睿,2016,《公司信息披露对投资者保护的有效性——对中国上市公司2001—2013 年年报披露的实证分析》,《经济评论》第1期,第132~146页。
[23] 张程睿和徐嘉倩,2019,《中国上市公司信息披露制度变迁与股票市场有效性》,《华南师范大学学报》第4期,第75~86页。
[24] 张肖飞和李焰,2012,《股票市场透明度、信息份额与价格发现效率》,《中国管理科学》第 3期,第10~19页。
[25] 中国股票市场质量研究课题组,2018,《中国股票市场质量研究报》,南开大学中国市场质量研究中心。
[26] 钟覃琳和陆正飞,2018,《资本市场开放能提高股价信息含量吗?——基于“沪港通”效应的实证检验》,《管理世界》第1期,第169~179页。
[27] 周开国、李涛和张燕,2011,《董事会秘书与信息披露质量》,《金融研究》第7期,第167~181页。
[28] Aggarwal, R. K., and G. Wu, 2006, “Stock Market Manipulations”, Journal of Business, 79(4):1915~1953.
[29] Aitken, M. J., et al., 2015, “Market Fairness: The Poor Country Cousin of Market Efficiency”, Journal of Business Ethics, 10(2):1~19.
[30] Atanasov, V., et al.,2015, “ Financial Intermediaries in the Midst of Market Manipulation:Did They Protect the Fool or Help the Knave?”, Journal of Corporate Finance, 34(1):210~234.
[31] Bagehot ,W. ,1971, “The Only Game in Town”, Financial Analysts Journal, 27(2):12~14.
[32] Baker ,S. R., N. Bloom, and S. J.Davis, 2016, “Measuring Economic Policy Uncertainty”, Quarterly Journal of Economics, 131(4) : 1593~1636.
[33] Ben,D., I., F. Franzoni, A. Landier, et al, 2013, “Do Hedge Funds Manipulate Stock Prices?” Journal of Finance, 68(6):2383~2434.
[34] Black, F., 1988, “An Equilibrium Model of the Crash”, NBER Macroeconomics Annual, 3(5): 269~275.
[35] Boehmer, E. and J. Wu, 2012,“Short Selling and the Price Discovery Process”, Review of Financial Studies, 26(2): 287~322.
[36] Bris, A. , W. N. Goetzmann, and N. Zhu, 2007, “Efficiency and the Bear: Short Sales and Markets Around the World”, Journal of Finance ,62(3):1029~1079.
[37] Carhart, M. M., et al., 2002, “Leaning for The Tape: Evidence of Gaming Behavior in Equity Mutual Funds”, Journal of Finance, 57(2):661~693.
[38] Chamberlain, T. W., and C. C. Y. Kwan, 1989, “Expiration-Day Effects of Index Futures and Options: Some Canadian Evidence”, Financial Analysts Journal, 45(5):67~71.
[39] Chordia, T., et al. , 2008, “Liquidity and Market Efficiency” , Journal of Financial Economics, 87(2):249~268.
[40] Comerton-Forde, C., and T. J. Putnins, 2011, “Measuring Closing Price Manipulation”, Journal of Financial Intermediation, 20(2):135~158.
[41] Copeland,T. E., and D. Galai , 1983, “Information Effects on the Bid-ask Spread”, Journal of Finance, 38(5):1457~1469.
[42] Easley, D., and M. O'Hara, 1987, “Price, Trade Size, and Information in Securities Markets”, Journal of Financial Economics, 19(1):69~90.
[43] Easley, D., and M. O'Hara, 1992, “Time and the Process of Security Price Adjustment”, Journal of Finance,47(2):577~605.
[44] Foucault T.,1998, “Order Flow Composition and Trading Costs in A Dynamic Limit Order Market”, Journal of Financial Markets, 1817(2):99~134.
[45] Glosten, L. R., and P. R. Milgrom , 1985, “ Bid,Ask and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders”, Journal of Financial Economics, 14(1):71~100.
[46] Hillion, P., and M. Suominen, 2004, “The Manipulation of Closing Prices”, Journal of Financial Markets, 7(4):351~375.
[47] Imisiker, S., and B. K. O. Tas, 2013, “Which Firms are More Prone to Stock Market Manipulation?”, Emerging Markets Review, 16(3):119~130.
[48] Kim, O., and R. Verrecchia ,2001, “The Relation Among Disclosure, Returns, and Trading Volume Information”, Accounting Review, 76(4):633~654.
[49] Kolasinski, A.C., A. Reed, and J. R. Thornock, 2013, “Can Short Restrictions Actually Increase Informed Short Selling?” , Financial Management, 42(1): 155~181.
[50] Lee, I. H., 1998, “Market Crashes and Informational Avalanches”, Review of Economic Studies, 65(4): 741~759.
[51] Lo, A. W., and A. C. Mackinlay, 1988, “Stock Market Prices Do not Follow Random Walks:Evidence from a Simple Specification Test”, Review of Financial Studies,1(1): 41~66.
[52] Neupane, S., et al. , 2017, “Trade Based Manipulation: Beyond the Prosecuted Cases”, Journal of Corporate Finance, 42(2):115~130.
[53] O'Hara, M., 1995, “Market Microstructure Theory”, Cambridge: Blackwell Publishers Inc.
[54] Stoll, H. R. , and R. E. Whaley , 1987,“Program Trading and Expiration-day Effects”, Financial Analysts Journal,43(2):16~28.
[55] Xu, N., K. C. Chan , and X. Jiang, 2013, “ Do Star Analysts Know More Firm-specific Information ? Evidence from China . Journal of Banking & Finance, 37( 1):89~102.
[1] 郭照蕊, 黄俊. 高铁时空压缩效应与公司权益资本成本——来自A股上市公司的经验证据[J]. 金融研究, 2021, 493(7): 190-206.
[2] 林志帆, 杜金岷, 龙晓旋. 股票流动性与中国企业创新策略:流水不腐还是洪水猛兽?[J]. 金融研究, 2021, 489(3): 188-206.
[3] 陈辉, 顾乃康. 新三板做市商制度、股票流动性与证券价值[J]. 金融研究, 2017, 442(4): 176-190.
[4] 冯根福, 刘虹, 冯照桢, 温军. 股票流动性会促进我国企业技术创新吗?[J]. 金融研究, 2017, 441(3): 192-206.
[5] 谭松涛, 阚铄, 崔小勇. 互联网沟通能够改善市场信息效率吗?——基于深交所“互动易”网络平台的研究[J]. 金融研究, 2016, 429(3): 174-188.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1