Please wait a minute...
金融研究  2020, Vol. 481 Issue (7): 38-56    
  本期目录 | 过刊浏览 | 高级检索 |
美联储政策变化、国际资本流动与宏观经济波动
郝大鹏, 王博, 李力
中国人民大学汉青经济与金融高级研究院,北京 100872;
南开大学金融学院,天津 300350;
中山大学国际金融学院,广东珠海 519082
Fed Policy Changes, International Capital Flows, and Macroeconomic Fluctuations
HAO Dapeng, WANG Bo, LI Li
Hanqing Advanced Institute of Economics and Finance, Renmin University of China;
School of Finance, Nankai University;
International School of Business & Finance,Sun Yat-Sen University
下载:  PDF (1726KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文构建包含国际投资者、外资企业和银行流动性冲击的DSGE模型来探究美联储货币政策变动和政策不确定性对我国宏观经济的影响和作用机制。研究发现:(1) 美联储加息会导致我国产出、投资和通货膨胀的下降、汇率贬值、国际资本外流和银行系统流动性紧张。随着金融摩擦程度的增加和银行杠杆率的上升,美联储加息对我国产出、投资和资产价格的负面影响会进一步增强。(2) 美联储货币政策不确定性的增加会直接导致外资企业的投资、劳动需求和产出的下降,并对我国总产出、总投资和资产价格产生明显的负向外溢效应,进一步加剧我国宏观经济的波动。(3)为应对美联储的利率变动,适当限制国际资本流动能有效稳定我国经济波动和改善社会福利,而实施固定汇率和央行盯住美国利率的政策会加大宏观经济的波动,并导致社会福利下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝大鹏
王博
李力
关键词:  美联储货币政策  国际资本流动  经济波动  DSGE模型    
Summary:  The Fed entered the rate hike cycle in 2015, which had a huge impact on international financial markets, commodity markets and emerging countries, but it gradually withdrew its quantitative easing policy as the U.S. economy recovered. Geopolitical risks have increased in recent years, friction in Sino-U.S. trade has intensified, the international economic situation has continued to deteriorate, and China faces further external uncertainties. Now, in 2020, as the COVID-19 pandemic continues, the Fed has restarted its quantitative easing and the risk and uncertainty of monetary policies have increased significantly. According to the latest IMF forecast, the global economy will shrink by 3% in 2020. Thus, the uncertainty of prospects for global growth and the volatility of the Fed's monetary policy may have adverse impacts on China's real economy and make macro-control more difficult.
A large amount of the literature proves that the Fed's monetary policy adjustment has a significant spillover effect on other countries, which is to a large extent transmitted by international capital flows. However, there is no consensus has on the measures that emerging economies should take to effectively deal with the impacts of foreign monetary shocks. The quality of the measures can depend on the research perspectives, data processing, and model settings in relevant studies. Chinese research mainly focuses on traditional exchange rate, price, and financial friction. In this study, we incorporate international investors, foreign-funded enterprises, and the liquidity shocks and financial frictions of the banking sector into a new Keynesian DSGE model under open conditions, to measure the degree of capital control. The model consists of the six submodels of international investors and family, enterprise, banking, foreign, and government sectors. Monetary policy uncertainty has been found to adversely affect the economy, so we introduce the Fed's monetary policy uncertainty into the model and explore its effects.
Our study makes three main contributions to the literature. First, the research frameworks of Gertler and Karadi (2011) and Radde (2015) are extended to open conditions. A DSGE model that includes international investors, foreign direct investment, bank liquidity shocks, and financial friction is developed, and the impacts and mechanism of the Fed's interest rate hike on China's macro economy is analyzed. Second, we follow Fernández-Villaverde and Rubio-Ramírez (2010) and introduce the stochastic volatility of monetary policy in the U.S. interest rate rules to reflect the uncertainty of monetary policy. We then examine the effects of this uncertainty on China's economy. Third, based on the DSGE model, we use welfare analysis criteria to assess the measures for dealing with the Fed's interest rate hike, and conduct an analysis of the impacts of external adverse shocks.
We generate three main findings. First the Fed's rate hike leads to a decline in China's output, investment, and inflation, and also causes exchange rate depreciation, international capital outflows, and tight liquidity in the banking system. The increase in the degree of financial friction and bank leverage leads to a greater decline in China's output, investment, and asset prices after the Fed's interest rate hike, which then threatens China's macroeconomic stability. Second, restricting international capital flows in response to the Fed's interest rate hike can effectively stabilize China's economy and improve social welfare, and the implementation of a fixed exchange rate and the pegging of China's central bank to U.S. interest rates increases macroeconomic volatility and leads to a decline in social welfare. Third, the increase in the uncertainty of Fed's monetary policy leads directly to a decline in investment, labor demand, and output of foreign-funded enterprises, and also has significant negative spillover effects on China's total output, total investment, and asset prices, which increases the country's macroeconomic fluctuations.
Our results show that turmoil in international financial markets and international trade has adverse impacts on China's economy. Although stabilizing the economy is important in the short term, China should continue to reform its financial market in the long term. In addition, when formulating its interest rate policy, the Chinese central bank should consider China's economic and financial conditions more closely.
Keywords:  Fed Monetary Policy    International Capital Flows    Macroeconomic Fluctuations    DSGE Model
JEL分类号:  E32   E40   F41  
基金资助: * 本文为中国人民大学2019年度拔尖创新人才培育资助计划成果。本文感谢国家自然科学基金面上项目(71873070)、国家自然科学基金青年项目(71903194)、国家社会科学基金重大项目(17ZDA074)、天津市教委重大项目(2019JWZD42)的资助。
作者简介:  郝大鹏,博士研究生,中国人民大学汉青经济与金融高级研究院,E-mail:haodp@ruc.edu.cn.
王 博(通讯作者),经济学博士,副教授,南开大学金融学院,E-mail:nkwangbo@nankai.edu.cn.
李 力,经济学博士,助理教授,中山大学国际金融学院,E-mail:nklili0903c@163.com.
引用本文:    
郝大鹏, 王博, 李力. 美联储政策变化、国际资本流动与宏观经济波动[J]. 金融研究, 2020, 481(7): 38-56.
HAO Dapeng, WANG Bo, LI Li. Fed Policy Changes, International Capital Flows, and Macroeconomic Fluctuations. Journal of Financial Research, 2020, 481(7): 38-56.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2020/V481/I7/38
[1] 傅广敏,2017,《美联储加息、人民币汇率与价格波动》,《国际贸易问题》第3期,第131~142页。
[2] 何国华和李洁,2017,《跨境资本流动、金融波动与货币政策选择》,《国际金融研究》第9期,第3~13页。
[3] 康立和龚六堂,2014,《金融摩擦、银行净资产与国际经济危机传导——基于多部门DSGE模型分析》,《经济研究》第5期,第147~159页。
[4] 李力、王博、刘潇潇和郝大鹏,2016,《短期资本、货币政策和金融稳定》,《金融研究》第9期,第18~32页。
[5] 马勇,2013,《植入金融因素的DSGE模型与宏观审慎货币政策规则》,《世界经济》第7期,第68~92页。
[6] 王博、李力和郝大鹏,2019,《货币政策不确定性、违约风险与宏观经济波动》,《经济研究》第3期,第119~134页。
[7] 王冠楠和项卫星,2017,《金融摩擦与宏观经济的外部脆弱性——基于美联储加息政策的分析视角》,《国际金融研究》第7期,第13~23页。
[8] 周诚君、傅勇和万阿俊,2014,《人民币升值是影响中国出口的主要因素吗——理论与实证研究》,《金融研究》第11期,第1~21页。
[9] 张勇,2015,《热钱流入、外汇冲销与汇率干预——基于资本管制和央行资产负债表的DSGE分析》,《经济研究》第7期,第116~130页。
[10] Andreasen, M. M., J. Fernández-Villaverde, and J. F. Rubio-Ramírez. 2017. “The Pruned State-space System for Non-linear DSGE Models: Theory and Empirical Applications”, The Review of Economic Studies, 85(1):1~49.
[11] Chang, C., Z. Liu and M. M. Spiegel. 2015. “Capital Controls and Optimal Chinese Monetary Policy”, Journal of Monetary Economics, 74: 1~15.
[12] Cook, D. and M. B. Devereux. 2016. “Exchange Rate Flexibility under the Zero Lower Bound”, Journal of International Economics, 101: 52~69.
[13] Edwards, S. 2012. “The Federal Reserve, the Emerging Markets, and Capital Controls: A High‐Frequency Empirical Investigation”, Journal of Money, Credit and Banking, 44: 151~184.
[14] Fernández-Villaverde, J., and J. Rubio-Ramírez. 2010. “Macroeconomics and Volatility: Data, Models, and Estimation”, NBER Working Paper, No. w16618.
[15] Fernández-Villaverde, J., P. Guerrón-Quintana, J. F. Rubio-Ramírez, and M. Uribe. 2011. “Risk Matters: The Real Effects of Volatility Shocks”, The American Economic Review, 101(6):2530~2561.
[16] Galí, J. 2015. Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework and Its Applications, Princeton University Press.
[17] Galí, J. and T. Monacelli. 2005. “Monetary Policy and Exchange Rate Volatility in a Small Open economy”, The Review of Economic Studies, 72(3): 707~734.
[18] Gertler, M. and P. Karadi. 2011. “A Model of Unconventional Monetary Policy”, Journal of monetary Economics, 58(1): 17~34.
[19] Han, X. and S. J. Wei. 2014. “Policy Choices and Resilience to International Monetary Shocks”, Global Economic Review, 43(4): 319~337.
[20] Husted, L., J. Rogers, and B. Sun. 2020. “Monetary Policy Uncertainty”, Journal of Monetary Economics, forthcoming.
[21] Iacoviello, M. and S. Neri. 2010. “Housing Market Spillovers: Evidence from an Estimated DSGE Model”, American Economic Journal: Macroeconomics, 2(2):125~64.
[22] Lakdawala, A., T. Moreland, and M. Schaffer. 2020. “The International Spillover Effects of US Monetary Policy Uncertainty”, Working Paper 2020-8, Michigan State University, Department of Economics.
[23] Prasad N. 2018. “Sterilized Interventions and Capital Controls”, Journal of International Money and Finance, 88: 101~121.
[24] Radde, S. 2015. “Flight to Liquidity and the Great Recession”, Journal of Banking & Finance, 54: 192~207.
[25] Rey H. 2015. “Dilemma not Trilemma: The Global Financial Cycle and Monetary Policy Independence”, NBER Working Paper, No. w21162.
[26] Schmitt-Grohé, S. and M. Uribe. 2004. “Solving Dynamic General Equilibrium Models Using a Second-order Approximation to the Policy Function”, Journal of Economic Dynamics and Control, 28(4):755~775.
[27] Tillman, P. 2016. “Uncertainty about Federal Reserve Policy and Its Transmission to Emerging Economies: Evidence from Twitter”, ADBI Working Paper 592, Asian Development Bank Institute.
[28] Uribe, M. and V. Z. Yue, 2006. “Country Spreads and Emerging Countries: Who Drives Whom?”, Journal of international Economics, 69(1): 6~36.
[1] 闫先东, 张鹏辉. 土地价格、土地财政与宏观经济波动[J]. 金融研究, 2019, 471(9): 1-18.
[2] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[3] 林东杰, 崔小勇, 龚六堂. 货币政策、消费品和投资品通货膨胀——基于金融加速器视角[J]. 金融研究, 2019, 465(3): 18-36.
[4] 王遥, 潘冬阳, 彭俞超, 梁希. 基于DSGE模型的绿色信贷激励政策研究[J]. 金融研究, 2019, 473(11): 1-18.
[5] 林滨, 王弟海, 陈诗一. 企业效率异质性、金融摩擦的资源再分配机制与经济波动[J]. 金融研究, 2018, 458(8): 17-32.
[6] 王倩, 赵铮. 同业融资视角下的商业银行杠杆顺周期性[J]. 金融研究, 2018, 460(10): 89-105.
[7] 邵全权, 王博, 柏龙飞. 风险冲击、保险保障与中国宏观经济波动[J]. 金融研究, 2017, 444(6): 1-16.
[8] 高然, 龚六堂. 土地财政、房地产需求冲击与经济波动[J]. 金融研究, 2017, 442(4): 32-45.
[9] 马勇, 张靖岚, 陈雨露. 金融周期与货币政策[J]. 金融研究, 2017, 441(3): 33-53.
[10] 童中文, 范从来, 张炜, 朱辰. 金融审慎监管与货币政策的协同效应——虑及金融系统性风险防范[J]. 金融研究, 2017, 441(3): 16-32.
[11] 张翔, 刘璐, 李伦一. 国际大宗商品市场金融化与中国宏观经济波动[J]. 金融研究, 2017, 439(1): 35-51.
[12] 马鑫媛, 赵天奕. 非正规金融与正规金融双重结构下货币政策工具比较研究[J]. 金融研究, 2016, 428(2): 137-144.
[13] 马骏, 施康, 王红林, 王立升. 利率传导机制的动态研究[J]. 金融研究, 2016, 427(1): 31-49.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[10] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1