Please wait a minute...
金融研究  2019, Vol. 474 Issue (12): 106-124    
  “货币政策与宏观审慎政策双支柱调控框架”专辑 本期目录 | 过刊浏览 | 高级检索 |
宏观审慎与货币政策双支柱框架研究——基于系统性风险视角
方意, 王晏如, 黄丽灵, 和文佳
中央财经大学金融学院,北京 100081;
北京大学汇丰商学院,广东深圳 518055
Two-Pillar Framework of Macroprudential and Monetary Policy: A Perspective on Systemic Risk
FANG Yi, WANG Yanru, HUANG Liling, HE Wenjia
School of Finance, Central University of Finance and Economics;
HSBC Business School, Peking University
下载:  PDF (1131KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本轮国际金融危机之后,建立“宏观审慎政策专门盯住金融稳定目标,货币政策主要关注经济稳定目标”的双支柱成为国际社会的普遍共识。本文基于系统性风险视角,深入剖析系统性风险的累积和实现机制,从时间和空间两个维度梳理宏观审慎政策实现金融稳定的有效性,以及货币政策对系统性风险造成的潜在溢出性。目前从系统性风险的时间维度探讨双支柱政策的研究已较为丰富,可以总结为宏观审慎政策的“逆周期调节”机制和货币政策的“资本缺口”机制。从系统性风险的空间维度探讨双支柱政策的研究,也即对双支柱政策如何作用和改变金融机构内部关联网络的研究正成为研究热点。本文从政策工具和影响机制上对空间维度双支柱政策进行了系统梳理。基于以上分析,本文对双支柱政策的制定提出如下建议:时间维度宏观审慎政策要关注并消除货币政策对时间维度系统性风险的溢出性,同时要加强空间维度宏观审慎政策工具的创新力度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方意
王晏如
黄丽灵
和文佳
关键词:  宏观审慎政策  货币政策  时间维度系统性风险  空间维度系统性风险    
Summary:  One of the most essential lessons of the global financial crisis is that a single monetary policy cannot simultaneously maintain both economic and financial stability. To reduce systemic risks, China has proposed a “double-pillar” regulation framework underpinned by both monetary policy and macroprudential policy. This double-pillar framework implies the principle of separating policies from function, emphasizing that macroprudential policy exclusively anchors financial stability, whereas monetary policy targets inflation and resource utilization. Innovatively, this study provides a theoretical foundation for the double-pillar framework from the perspective of systemic risk. Unlike previous studies, our study focuses on risk itself rather than on economic welfare analysis, and pays equal attention to both the time and cross-sectional dimensions of the nexus of the double-pillar framework and systemic risk.
   Above all, this study identifies the mechanism through which systemic risk accumulates and is realized in the two stages of the financial cycle. Specifically, systemic risk builds up during the upward stage of a financial cycle, when it is mainly characterized as a rise in the level of risk-taking in the financial sector under a positive shock. During a downward cycle, systemic risk is realized when negative shocks occur. It can be amplified by leverage mechanisms and interconnection networks within the financial sector, and it will eventually cause externalities to the rest of the economy. Furthermore, we identify two dimensions of systemic risk: the time dimension and the cross-sectional dimension. Based on these two dimensions, we then answer our two main research questions.
   First, we determine the effectiveness of macroprudential policy. (i) Time-dimension macroprudential policy focuses on the time dimension of systemic risk; that is, the procyclicality between the financial sector and the real economy. Using countercyclical instruments such as loan-to-value and capital adequacy ratio can proactively reduce risk accumulation in the upward cycle and lower the probability that systemic risk will be realized. At the same time, establishing a reasonable countercyclical capital buffer or liquidity coverage requirement can enhance the ability of financial institutions to resist negative shocks during the downward cycle, reducing the negative externalities to the real economy when a crisis erupts. (ii) Cross-sectional dimension macroprudential policy focuses on thecross-sectionaldimension of systemic risk; that is, the risk amplification mechanism generated by the related network within the financial sector. Ex ante instruments such as “window guidance” or supervision of systematically important institutions can mitigate the degree of financial interconnection networks and potential risk contagion effects. Ex post tools such as liquidity injection are used to prevent institutions from selling illiquid assets that re-impacts the interconnection network and further amplify the overall losses.
   Second, we study the spillover effect of monetary policy on systemic risk. (i) The spillover of monetary policy on the time dimension of systemic risk is centered on the “capital gap” mechanism. As a positive shock, loose monetary policy affects financial institutions' expansion behavior on their balance sheets, which leads to a positive feedback loop of positive capital gaps, and this exacerbates the accumulation of systemic risks in the upward financial cycle. In contrast, contractionary monetary policy as a negative shock may cause a negative feedback loop of negative capital gaps in a fire sale network, which accelerates the realization of systemic risks in the downward cycle. (ii) Previous studies have paid less attention to the effects of spillover from the cross-sectional dimension of monetary policy on systemic risk. Thus, we briefly outline two potential mechanisms that influence the interconnection network structure of interbank markets, namely the demand matching and risk preference mechanisms.
   Overall, we find that previous studies of the dual-pillar policy widely examine the time dimension of systemic risk, but few consider the cross-sectional dimension. Hence, we propose the following two suggestions for the adoption and coordination of a “double-pillar” framework. (i) Time-dimension macroprudential policy should focus on and eliminate the spillover caused by monetary policy. (ii) Innovation in cross-sectional-dimension macroprudential instruments should be encouraged.
Keywords:  Macroprudential Policy    Monetary Policy    Time dimension Systemic Risk    Cross-sectional Systemic Risk
JEL分类号:  E52   E58   E60  
基金资助: * 本文感谢国家自然科学基金项目(71973162;71703182;71850005;71503290;71801117)、中央财经大学青年科研创新团队项目(《中国金融部门系统性风险与金融稳定政策》)、中央财经大学“青年英才”培育支持计划(QYP1802;QYP1906)、中央财经大学“青蓝科研团队”(QL18004)、北京市金融学会科研项目青年项目(《基于关联网络的银行系统性风险度量与监管研究》)的资助。
通讯作者:  黄丽灵,经济学博士研究生,北京大学汇丰商学院,E-mail:1801111194@pku.edu.cn.   
作者简介:  方意,金融学博士,副教授,中央财经大学金融学院,E-mail:fangyi@cufe.edu.cn.王晏如,金融学博士研究生,中央财经大学金融学院,E-mail:wangyanru628@126.com.和文佳,金融学博士研究生,中央财经大学金融学院,E-mail:15600918207@163.com.
引用本文:    
方意, 王晏如, 黄丽灵, 和文佳. 宏观审慎与货币政策双支柱框架研究——基于系统性风险视角[J]. 金融研究, 2019, 474(12): 106-124.
FANG Yi, WANG Yanru, HUANG Liling, HE Wenjia. Two-Pillar Framework of Macroprudential and Monetary Policy: A Perspective on Systemic Risk. Journal of Financial Research, 2019, 474(12): 106-124.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V474/I12/106
[1] 范小云、王道平和刘澜飚,2012,《规模、关联性与中国系统重要性银行的衡量》,《金融研究》第11期,第16~30页。
[2] 方意,2016,《系统性风险的传染渠道与度量研究——兼论宏观审慎政策实施》,《管理世界》第8期,第32~57页。
[3] 方意和黄丽灵,2019,《系统性风险、抛售博弈与宏观审慎政策》,《经济研究》第9期,第41~55页。
[4] 李政、梁琪和方意,2019,《中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化》,《金融研究》第2期,第40~58页。
[5] 马君潞、范小云和曹元涛,2007,《中国银行间市场双边传染的风险估测及其系统性特征分析》,《经济研究》第1期,第68~78页。
[6] 马勇和陈雨露,2013,《宏观审慎政策的协调与搭配:基于中国的模拟分析》,《金融研究》第8期,第57~69页。
[7] 唐文进和苏帆,2017,《极端金融事件对系统性风险的影响分析——以中国银行部门为例》,《经济研究》第4期,第17~33页。
[8] 童中文、解晓洋和邓熳利,2018,《中国银行业系统性风险的“社会性消化”机制研究》,《经济研究》第2期,第124~139页。
[9] 王永钦和徐鸿恂,2019,《杠杆率如何影响资产价格?——来自中国债券市场自然实验的证据》,《金融研究》第2期,第20~39页。
[10] 项后军、郜栋玺和陈昕朋,2018,《基于“渠道识别”的货币政策银行风险承担渠道问题研究》,《管理世界》第8期,第55~66页。
[11] 徐明东和陈学彬,2012,《货币环境、资本充足率与商业银行风险承担》,《金融研究》第7期,第50~62+489页。
[12] 杨子晖、陈雨恬和谢锐楷,2018,《我国金融机构系统性金融风险度量与跨部门风险溢出效应研究》,《金融研究》第10期,第19~37页。
[13] 杨子晖和周颖刚,2018,《全球系统性金融风险溢出与外部冲击》,《中国社会科学》第12期,第69~90+200~201页。
[14] 张雪兰和何德旭,2012,《货币政策立场与银行风险承担——基于中国银行业的实证研究(2000—2010)》,《经济研究》第5期,第31~44页。
[15] 周小川,2011,《金融政策对金融危机的响应——宏观审慎政策框架的形成背景、内在逻辑和主要内容》,《金融研究》第1期,第1~14页。
[16] Acemoglu, D., A. Ozdaglar and A. Tahbaz-Salehi. 2015. “Systemic Risk and Stability in Financial Networks” American Economic Review, 105: 564~608.
[17] Acharya, V. V. and T. Yorulmazer. 2008. “Information Contagion and Bank Herding” Journal of Money, Credit & Banking, 40(1): 215~231.
[18] Acharya, V. V., V. Viral, L. H. Pedersen, T. Philippon and M. Richardson. 2017. “Measuring Systemic Risk” Review of Financial Studies, 30:2~47.
[19] Adrian, T. and H. S. Shin. 2010a. “Financial Intermediaries and Monetary Economics”, in Handbook of Monetary Economic, Eds. by Friedman, B. M. and M. Woodford, pp. 601~650.
[20] Adrian, T. and H. S. Shin. 2010b. “Liquidity and Leverage” Journal of Financial Intermediation, 19(3): 418~437.
[21] Adrian, T. and M. K. Brunnermeier. 2016. “CoVaR” American Economic Review, 106: 1705~1741.
[22] Adrian, T. and N. Boyarchenko. 2018. “Liquidity Policies and Systemic Risk” Journal of Financial Intermediation, 35: 45~60.
[23] Akinci, O. and J. Olmstead-Rumsey. 2018. “How Effective are Macroprudential Policies? An Empirical Investigation” Journal of Financial Intermediation, 33: 33~57.
[24] Allen, F. and D. Gale. 2000. “Financial Contagion” Journal of Political Economy, 108(1): 1~33.
[25] Allen, F., A. Babus and E. Carletti. 2012. “Asset Commonality, Debt Maturity and Systemic Risk” Journal of Financial Economics, 104(3): 519~534.
[26] Anand, K., P. Gai and M. Marsili. 2012. “Rollover Risk, Network Structure and Systemic Financial Crises” Journal of Economic Dynamics and Control, 36(8): 1088~1100.
[27] Angeloni, I. and E. Faia. 2013. “Capital Regulation and Monetary Policy with Fragile Banks” Journal of Monetary Economics, 60(3): 311~324.
[28] Banerjee, R. N. and H, Mio. 2018. “The Impact of Liquidity Regulation on Banks” Journal of Financial Intermediation, 35: 30~44.
[29] Benoit, S., J. E. Colliard, C. Hurlin and C. Pérignon. 2017. “Where the Risks Lie: A Survey on Systemic Risk” Review of Finance, 21(1): 109~152.
[30] Bernanke, B. S., M. Gertler and S. Gilchrist. 1999. “The Financial Accelerator in a Quantitative Business Cycle Framework” Handbook of Macroeconomics, 1: 1341~1393.
[31] Borio, C. and H. Zhu. 2012. “Capital Regulation, Risk-taking and Monetary Policy: A Missing Link in the Transmission Mechanism?” Journal of Financial Stability, 8(4): 236~251.
[32] Boss, M., H. Elsinger, M. Summer and S. Thurner. 2004. “Network Topology of the Interbank Market” Quantitative Finance, 4(6): 677~684.
[33] Brownlees, C. and R. F. Engle. 2016. “SRISK: A Conditional Capital Shortfall Measure of Systemic Risk” Review of Financial Studies, 30(1): 48~79.
[34] Brunnermeier, M. K. and P. Cheridito. 2019. “Measuring and Allocating Systemic Risk” Risks, 7(2): 46.
[35] Caccioli, F., M. Shrestha, C. Moore and J. D. Farmer. 2014. “Stability Analysis of Financial Contagion due to Overlapping Portfolios” Journal of Banking & Finance, 46: 233~245.
[36] Chadha, J. S. and L. Corrado. 2012. “Macro-prudential Policy on Liquidity: What Does a DSGE Model Tell Us?” Journal of Economics and Business, 64(1): 37~62.
[37] Cifuentes, R., G. Ferrucci and H. S. Shin. 2005. “Liquidity Risk and Contagion” Journal of the European Economic Association, 3: 556~566.
[38] Claessens, S., S. R. Ghosh and R. Mihet. 2013. “Macro-prudential Policies to Mitigate Financial System Vulnerabilities” Journal of International Money and Finance, 39: 153~185.
[39] Craig, B. and G. von Peter. 2014. “Interbank Tiering and Money Center Banks” Journal of Financial Intermediation, 23(3): 322~347.
[40] Danielsson, J., H. S. Shin and J. P. Zigrand. 2012. “Endogenous and Systemic Risk”, in Quantifying Systemic Risk, University of Chicago Press, pp. 73~94.
[41] Diamond, D. W. and A. K. Kashyap. 2016. “Liquidity Requirements, Liquidity Choice, and Financial Stability”, in Handbook of Macroeconomics, pp. 2263~2303..
[42] Dicks, D. L and P. Fulghieri. 2019. “Uncertainty Aversion and Systemic Risk” Journal of Political Economy, 127(3): 1118~1155.
[43] Diebold, F. X. and K. Yilmaz. 2014. “On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms” Journal of Econometrics, 182(1): 119~134.
[44] Duarte, F. and T. M. Eisenbach. 2018. “Fire-sale Spillovers and Systemic Risk”, Federal Reserve Bank of New York Staff Reports.
[45] Dubois, C. and L. Lambertini. 2018. “A Macroeconomic Model of Liquidity, Wholesale Funding and Banking Regulation”, Working Paper.
[46] Elliott, M., B. Golub and M. O. Jackson. 2014. “Financial Networks and Contagion” American Economic Review, 104(10): 3115~3153.
[47] Fostel A. and J. Geanakoplos J. 2008. “Leverage Cycles and the Anxious Economy” American Economic Review, 98(4): 1211~1244.
[48] Gelain, P. 2011. “Macro-Prudential Policies in a DSGE Model with Financial Frictions”, in 7th Dynare Conference, Atlanta, USA.
[49] Georg, C. P. 2013. “The Effect of the Interbank Network Structure on Contagion and Common Shocks” Journal of Banking & Finance, 37: 2216-2228.
[50] Gerali, A., S. Neri, L. Sessa and F. M. Federico. 2010. “Credit and Banking in a DSGE Model of the Euro Area” Journal of Money, Credit and Banking, 42: 107~141.
[51] Gertler, M. and N. Kiyotaki. 2015. “Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy” American Economic Review, 105(7): 2011~2043.
[52] Greenwood, R., A. Landier and D. Thesmar. 2015. “Vulnerable Banks” Journal of Financial Economics, 115: 471~485.
[53] Haldane, A. G. and R. M. May. 2011. “Systemic Risk in Banking Ecosystems” Nature, 469: 7330.
[54] Hüser, A. 2015. “Too Interconnected to Fail: A Survey of the Interbank Networks Literature”, SAFE Working Paper No. 91.
[55] Jiménez, G., S. Ongena, J. L. Peydró and J. Saurina. 2017. “Macroprudential Policy, Countercyclical Bank Capital Buffers, and Credit Supply: Evidence from the Spanish Dynamic Provisioning Experiments” Journal of Political Economy, 125(6): 2126~2177.
[56] Kiyotaki, N. and J. Moore. 1997. “Credit Cycles” Journal of Political Economy, 105(2): 211~248.
[57] Kuttner, K. N. and I. Shim. 2016. “Can Non-interest Rate Policies Stabilize Housing Markets? Evidence from a Panel of 57 Economies” Journal of Financial Stability, 26: 31~44.
[58] Li, D. and N. Schürhoff. 2019. “Dealer Networks” Journal of Finance, 74(1): 91~144.
[59] Liu, A., M. Paddrik, S. Y. Yang and X. Zhang. 2017. “Interbank Contagion: An Agent-based Model Approach to Endogenously Formed Networks” Journal of Banking & Finance.
[60] Matsuyama, K. 2007. “Credit Traps and Credit Cycles” American Economic Review, 97: 503~516.
[61] Meh, C. and K. Moran. 2008. “The Role of Bank Capital in the Propagation of Shocks” Financial System Review, 57~58.
[62] Rajan, R. G. 2006. “Has Finance Made the World Riskier?” European Financial Management, 12(4): 499~533.
[63] Rubio. M. and J. A. Carrasco-Gallego. 2014. “Macroprudential and Monetary Policies: Implications for Financial Stability and Welfare” Journal of Banking & Finance, 49: 326~336.
[64] Shin, H. S. 2010. Risk and Liquidity, Published by Oxford University Press.
[65] Shin, H. S. and K. Shin. 2011. “Procyclicality and Monetary Aggregates”, NBER Working Paper.
[66] Shleifer, A. and R. W. Vishny. 2010. “Asset Fire Sales and Credit Easing” American Economic Review, 100(2): 46~50.
[67] Tillmann, P. 2015. “Estimating the Effects of Macroprudential Policy Shocks: A Qual VAR Approach” Economics Letters, 135: 1~4.
[68] Upper, C. 2011. “Simulation Methods to Assess the Danger of Contagion in Interbank Markets” Journal of Financial Stability, 7(3): 111~125.
[69] Wolski, M. and M. van de Leur. 2016. “Interbank Loans, Collateral and Modern Monetary Policy” Journal of Economic Dynamics and Control, 73: 388~416.
[70] Yu, S. X. 2013. “Evaluating Macroprudential Policy in a DSGE Framework with Financial Frictions”, Division of Social Science, New College of Florida Working Paper.
[1] 张礼卿, 钟茜. 全球金融周期、美国货币政策与“三元悖论”[J]. 金融研究, 2020, 476(2): 15-33.
[2] 谭小芬, 李源, 苟琴. 美国货币政策推升了新兴市场国家非金融企业杠杆率吗?[J]. 金融研究, 2019, 470(8): 38-57.
[3] 贾盾, 孙溪, 郭瑞. 货币政策公告、政策不确定性及股票市场的预公告溢价效应——来自中国市场的证据[J]. 金融研究, 2019, 469(7): 76-95.
[4] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[5] 林东杰, 崔小勇, 龚六堂. 货币政策、消费品和投资品通货膨胀——基于金融加速器视角[J]. 金融研究, 2019, 465(3): 18-36.
[6] 陈雨露. 四十年来中央银行的研究进展及中国的实践[J]. 金融研究, 2019, 464(2): 1-19.
[7] 王永钦, 徐鸿恂. 杠杆率如何影响资产价格?——来自中国债券市场自然实验的证据[J]. 金融研究, 2019, 464(2): 20-39.
[8] 马骏, 何晓贝. 货币政策与宏观审慎政策的协调[J]. 金融研究, 2019, 474(12): 58-69.
[9] 李斌, 吴恒宇. 对货币政策和宏观审慎政策双支柱调控框架内在逻辑的思考[J]. 金融研究, 2019, 474(12): 1-17.
[10] 马勇. “双支柱”调控框架的理论与经验基础[J]. 金融研究, 2019, 474(12): 18-37.
[11] 王信, 贾彦东. 货币政策和宏观审慎政策的关联及启示——基于英格兰银行的经验[J]. 金融研究, 2019, 474(12): 38-57.
[12] 张斌, 熊婉婷. 经济结构转型与“双支柱”调控框架[J]. 金融研究, 2019, 474(12): 92-105.
[13] 黄益平, 曹裕静, 陶坤玉, 余昌华. 货币政策与宏观审慎政策共同支持宏观经济稳定[J]. 金融研究, 2019, 474(12): 70-91.
[14] 芦东, 周梓楠, 周行. 开放经济下的“双支柱”调控稳定效应研究[J]. 金融研究, 2019, 474(12): 125-146.
[15] 司登奎, 葛新宇, 曾涛, 李小林. 房价波动、金融稳定与最优宏观审慎政策[J]. 金融研究, 2019, 473(11): 38-56.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1