Please wait a minute...
金融研究  2021, Vol. 495 Issue (9): 12-29    
  本期目录 | 过刊浏览 | 高级检索 |
金融风险传染机制研究—— 基于中国上市银行数据的模拟
马骏, 何晓贝
北京大学国家发展研究院, 北京 100091
A Study on Financial Contagion: A Simulation Based on the Chinese Banking Sector Data
MA Jun, HE Xiaobei
National School of Development, Peking University
下载:  PDF (1723KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于中国上市银行的资产负债表数据建立了金融风险传染模型,对金融风险通过价格渠道传染的过程进行推演。模型根据金融市场数据校准了主要债券资产的需求曲线,模拟银行面临资本充足率约束条件下的最优抛售行为,有助于解决现有文献微观基础不足的问题,并为监管机构建立宏观审慎压力测试模型提供研究参考。本文模拟结果和政策含义如下:(1)银行的资产结构和金融市场深度都是影响金融风险传染的重要因素,过去几年随着我国金融市场深度的增加,金融风险传染的强度有所降低;(2)单个银行的最优行为在整个系统中可能会加剧金融风险的传染效应;(3)金融风险的演化呈非线性,判断风险的阶段对于监管部门至关重要。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马骏
何晓贝
关键词:  金融风险传染  资产抛售  宏观审慎压力测试    
Summary:  The debt to GDP ratio has increased significantly worldwide in the post Covid-19 era, makingmaintaining financial stability a great challenge to regulatory authorities globally. As conventional stress testing models do not consider the contagion of financial risks and thus tend to underestimate the impact of shocks on financial resilience, the central banks in advanced economies have started to develop macroprudential stress test models with specific focus on financial contagion channels. However, studies on the contagion effects within China's banking sector remain very limited. This paper aims to fill this gap and lay the foundation for China's macroprudential stress test framework. Based on the granular balance sheet data of listed Chinese banks, we present a micro-founded model to capture the financial contagion effects within the Chinese banking sector. We focus on the mark-to-market price channel of fire sales, as it is proven to be a critical contagion channel during financial crises. We calibrate the demand curves of multiple asset classes using the bond data, model banks' optimization problems in fire sales with regulatory constraints and simulate the model to exogeneous shocks.
Specifically, we model both the first-round and the second-round effects of financial risks spreading in the banking sector. The first-round effect is the direct impact of a shock on banks, characterized by banks' losses (e.g., credit losses) and the changes in banks' capital adequacy ratios due to the losses. The second-round effect is the financial contagion effect that arises from banks' responses. When a bank breaches its capital requirement due to the initial shock, it has to sell financial assets to boost the capital adequacy ratio. This behavior causes mark-to-market losses of other banks with common asset holdings, which may cause them to breach capital requirements and start another round of fire sale. That depresses asset prices further and generates greater mark-to-market losses. The second-round effect is the contagion channel through which financial risks are amplified and spread in the banking sector.
We also model banks' optimal behaviors in response to shocks. To minimize losses of fire sales, banks consider multiple factors when choosing assets to sell. The first is the risk weight of the assets, as assets with higher risk weights weigh more in calculating capital adequacy ratios. The second is the market depth of the asset. Illiquid assets are typically sold at price discounts which can be quite drastic amid fire sales. Selling illiquid assets leads to greater investment losses and banks need to sell more to meet the capital requirements. The third is the banks' balance sheet structure. Given the price discounts at fire sales, a bank suffers greater losses from selling a class of assets if that asset class accounts for a Large share on the bank's balance sheet.
Our results and policy implications are as follows. First, market depth is critically important in the transmission of contagion risks. As the depth of the Chinese bond market grew from 2017 to 2019, the financial contagion effects were attenuated over the period. In other words, the banking sector in China became more resilient during these three years. Second, individual banks' optimal behaviors may amplify the financial contagion effects. This is because banks all choose to sell the same kind of relatively liquid assets and hence cause sharp price falls of that particular asset, which causes greater mark-to-market losses of other banks holding the common asset. Third, an external shock can generate contagion effects in a non-linear pattern. It is therefore very difficult to discern the emergence and the end of financial risks, which poses a serious challenge for regulators to decide when to act or exit. Forth, it is essential for the regulators to build a macroprudential stress test framework that captures the financial contagion effects. A conventional static bank stress test only captures the direct effects of shocks, and our results suggest that this will greatly underestimate the impact of shocks.
Our paper contributes to the literature in three ways. First, we consider multiple asset classes with different levels of market depth and estimate their demand curve based on the data from the Chinese bond market. That forms the basis upon which we model banks' optimal behaviors in response to shocks. Second, we model banks' optimization problem with regulatory constraint, and analyze the key factors contributing to banks' optimal behaviors. This lays the micro-foundations for stress testing models, which has been omitted in the literature. Third, we investigate quantitatively the effects of financial contagion when banks face the constraint of capital adequacy ratio. The simulation results can help regulators identify the sources of emerging financial risks and assess their impact on the financial system.
Keywords:  Financial Contagion    Fire Sale    Macroprudential Stress Test
JEL分类号:  E44   E50   G20  
基金资助: * 作者感谢中国金融四十人论坛的课题资助,感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  何晓贝,经济学博士,北京大学国家发展研究院,E-mail:xbhe@nsd.pku.edu.cn.   
作者简介:  马 骏,经济学博士,北京大学国家发展研究院,E-mail:jma@nsd.pku.edu.cn.
引用本文:    
马骏, 何晓贝. 金融风险传染机制研究—— 基于中国上市银行数据的模拟[J]. 金融研究, 2021, 495(9): 12-29.
MA Jun, HE Xiaobei. A Study on Financial Contagion: A Simulation Based on the Chinese Banking Sector Data. Journal of Financial Research, 2021, 495(9): 12-29.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2021/V495/I9/12
[1] 邓向荣和曹红,2016,《系统性风险、网络传染与金融机构系统重要性评估》,《中央财经大学学报》, 第3期,第52~60页。
[2] 范小云、王道平和刘澜飚,2012, 《规模、关联性与中国系统重要性银行的衡量》,《金融研究》,第11期,第16~30页。
[3] 方意和郑子文,2016,《系统性风险在银行间的传染路径研究——基于持有共同资产网络模型》,《国际金融研究》,第6期,第61~72页。
[4] 方意,2016,《系统性风险的传染渠道与度量研究——兼论宏观审慎政策实施》,《管理世界》,第8期,第32~57页。
[5] 方意,2017,《中国银行业系统性风险研究——宏观审慎视角下的三个压力测试》,《经济理论与经济管理》,第2期,第48~66页。
[6] 高国华和潘英丽, 2012,《基于资产负债表关联的银行系统性风险研究》,《管理工程学报》,第4期,第162~168页。
[7] 宫晓莉和熊熊,2020, 《波动溢出网络视角的金融风险传染研究》,《金融研究》,第5期,第39~58页。
[8] 李政、梁琪和涂晓枫,2016,《我国上市金融机构关联性研究——基于网络分析法》,《金融研究》, 第8期,第95~110页。
[9] 马君潞、范小云和曹元涛,2007,《中国银行间市场双边传染的风险估测及其系统性特征分析》,《经济研究》,第1期,第68~78页。
[10] 王占浩、郭菊娥和薛勇,2016,《资产负债表关联、价格关联与银行间风险传染》,《管理工程学报》,第2期,第202~209页。
[11] Aikman, D., P. Alessandri, B. Eklund, P. Gai, S. Kapadia, E. Martin, N. Mora, G. Sterne and M. Willison, 2009, “Funding Liquidity Risk in a Quantitative Model of Systemic Stability”, Bank of England Working Paper, No. 372.
[12] Anand, K., G. Bédard-Pagé and V. Traclet, 2014, “Stress Testing the Canadian Banking System: A System-Wide Approach”, Financial System Review, 61.
[13] Bouchaud,Jean-Philippe, 2010. “The Endogenous Dynamics of Markets: Price Impact and Feedback Loops,”Papers 1009.2928, arXiv.org.
[14] Burrows, O., D. Learmonth, J. Mckeown and R. Williams, 2012, “RAMSI: A Top-Down Stress-Testing Model Developed at the Bank of England”. Bank of England Quarterly Bulletin, Bank of England, vol. 52(3), pages 204~212.
[15] Caballero, R., and A. Simsek, 2013. “Fire Sales in a Model of Complexity,” Journal of Finance, American Finance Association, vol. 68(6), pages 2549~2587, December.
[16] Cateau, G., T. Roberts and J. Zhou, 2015, “Indebted Households and Potential Vulnerabilities for the Canadian Financial System: A Microdata Analysis”, Financial System Review, Bank of Canada.
[17] Churm, R., 2017, “Stress Test Modeling at the Bank of England: Past, Present and Future”, Bank of England.
[18] Cifuentes, R., G. Ferrucci and H. S. Shin, 2005, “Liquidity Risk and Contagion”, Journal of the European Economic Association, 3(2-3): 556~566.
[19] Cont, R. and E. Schaanning, 2017, “Fire Sales, Indirect Contagion and Systemic Stress Testing”, Working Paper 2/2017, Norges Bank.
[20] Gauthier, C. and M. Souissi, 2012, “Understanding Systemic Risk in the Banking Sector: A Macrofinancial Risk Assessment Framework”, Bank of Canada Review, 2012(Spring): 29~38.
[21] Gorton, G. and L. Huang, 2004. “Liquidity, Efficiency, and Bank Bailouts,” American Economic Review, American Economic Association, Vol. 94(3), pages 455~483, June.
[22] Henry, J., C. Kok, A. Amzallag, P. Baudino, I. Cabral, M. Grodzicki, M. Gross, G. Halaj, M. Kolb and M. Leber, 2013, “A Macro Stress Testing Framework for Assessing Systemic Risks in the Banking Sector”. Occasional Paper Series 152, European Central Bank.
[23] Mitchell, M. and T. Pulvino, 2012. “Arbitrage crashes and the speed of capital,” Journal of Financial Economics, Elsevier, Vol. 104(3), pages 469~490.
[24] Pyoun, D., 2015, “Systemic Risk Assessment Model for Macroprudential Policy (SAMP)”, Bank of Korea.
[25] Schnabel, I., and H. S. Shin, 2004. “Liquidity and Contagion: The Crisis of 1763,” Journal of the European Economic Association, MIT Press, Vol. 2(6), pages 929~968, December.
[26] Shleifer, A. and R. Vishny, 2011. “Fire Sales in Finance and Macroeconomics,” Journal of Economic Perspectives, American Economic Association, Vol. 25(1), pages 29~48.
[1] 易纲. 中国的利率体系与利率市场化改革[J]. 金融研究, 0, (): 1-11.
[2] 易纲. 中国的利率体系与利率市场化改革[J]. 金融研究, 2021, 495(9): 1-11.
[3] 钱宗鑫, 王芳, 孙挺. 金融周期对房地产价格的影响——基于SV-TVP-VAR模型的实证研究[J]. 金融研究, 2021, 489(3): 58-76.
[4] 战明华, 李帅, 姚耀军, 吴周恒. 投资潮涌、双重金融摩擦与货币政策传导——转型时期货币政策的结构调控功能探究[J]. 金融研究, 2021, 489(3): 1-17.
[5] 邹静娴, 贾珅, 邱雅静, 邱晗. 经营风险与企业杠杆率[J]. 金融研究, 2020, 486(12): 20-39.
[6] 侯成琪, 黄彤彤. 流动性、银行间市场摩擦与借贷便利类货币政策工具[J]. 金融研究, 2020, 483(9): 78-96.
[7] 方昕, 张柏杨. 小微企业正规融资效果研究——基于匹配模型的估计[J]. 金融研究, 2020, 483(9): 97-116.
[8] 倪骁然, 刘士达. 金融同业活动与实体企业经营风险——来自地区层面同业存单业务的证据[J]. 金融研究, 2020, 483(9): 136-153.
[9] 江嘉骏, 高铭, 卢瑞昌. 网络借贷平台风险:宏观驱动因素与监管[J]. 金融研究, 2020, 480(6): 152-170.
[10] 李雪, 朱超, 易祯. 人口学特征与利率期限结构:老年社会平缓的收益率曲线[J]. 金融研究, 2020, 480(6): 96-113.
[11] 罗煜, 甘静芸, 何青. 中国金融形势的动态特征与演变机理分析:1996-2016[J]. 金融研究, 2020, 479(5): 21-38.
[12] 孙天琦, 王笑笑. 内外部金融周期差异如何影响中国跨境资本流动?[J]. 金融研究, 2020, 477(3): 1-20.
[13] 邹文理, 王曦, 谢小平. 中央银行沟通的金融市场响应──基于股票市场的事件研究[J]. 金融研究, 2020, 476(2): 34-50.
[14] 马骏, 何晓贝. 货币政策与宏观审慎政策的协调[J]. 金融研究, 2019, 474(12): 58-69.
[15] 黄益平, 曹裕静, 陶坤玉, 余昌华. 货币政策与宏观审慎政策共同支持宏观经济稳定[J]. 金融研究, 2019, 474(12): 70-91.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1