Please wait a minute...
金融研究  2020, Vol. 485 Issue (11): 94-112    
  本期目录 | 过刊浏览 | 高级检索 |
全球股票市场间风险传染的测度、监管及预警
刘程程, 苏治, 宋鹏
首都经济贸易大学统计学院,北京 100070;
中央财经大学统计与数学学院/金融学院,北京 100081
Measurement,Supervision and Early Warning of Risk Contagionamong Global Stock Markets
LIU Chengcheng, SU Zhi, SONG Peng
School of Statistics, Capital University of Economics and Business;
School of Statistics and Mathematics/School of Finance, Central University of Finance and Economics
下载:  PDF (2110KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,伴随金融一体化程度的加深,全球各股票市场间风险传染的动态复杂性加剧,其准确测度、高效监管及实时预警已成为优先事项。本研究选取全球21个代表性股票市场作为分析样本,首先基于广义向量自回归模型的滚动估计准确测度其间风险动态传染的高维网络序列,进一步借由矩阵值因子模型来稳健收缩上述序列,以探究其潜在动态核心结构,从而实现高效监管。最后,通过向量自回归模型的预测功能实现对全球股票市场间风险传染的实时预警。研究表明,全球股票市场间风险传染具有时变性,其监管与预警可通过少数与地理区域高度相关的风险区域间的动态传染关系及内部的市场构成来刻画。与此同时,我们发现中国内地等新兴市场的重要地位逐渐凸显。本文研究结论可为有效防范与化解金融风险提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘程程
苏治
宋鹏
关键词:  股票市场  风险传染  实时分层管理  中国内地等新兴市场    
Summary:  Economic globalization and financial integration have increased, strengthening the network effect of global financial markets and the resonance of market risks. Researchers should no longer ignore risk contagion because it is an important component for understanding the financial markets. The stability of the stock market no longer depends on its individual volatility, as it is now vulnerable to spillover from other markets. Risk contagion in global stock markets is difficult to research because the close relationships between multiple market entities in the international stock market system complicate the data structure of risk contagion's (high-dimensional matrix-value time series). In addition, the risk management of the international stock market system will become more difficult as emerging stock markets gain international recognition. The financial regulators will face two problematic choices, “too big to fail” and “too interconnected to fail.” Therefore, researchers have begun to prioritize accurate measurement, efficient supervision, and real-time early warning signs of risk contagion in global stock markets. Researchers have also begun to study the potential core structure of risk contagion.
This study selects 21 stock markets from four geographical regions, Asia, Oceania, Europe, and the Americas, as its sample data. Firstly, we construct a high-dimensional matrix-value time series based on the generalized vector autoregressive model to investigate the dynamic network effect of risk contagion. The time series represents the size and direction of risk contagion among global stock markets. Secondly, considering the widespread existence of financial data outliers, we use the high-dimensional matrix-valued factor model's robust dimensionality reduction function to extract potential risk communities and identify the dynamic core structure of risk contagion between global stock markets. This provides efficient supervision. Thirdly, we use the vector autoregressive model's prediction function to identify the real-time early warning signs of risk contagion's core structure between global stock markets in the next six months.
The empirical results show a time-varying pattern of risk contagion among global stock markets. Although the patterns are time-dependent, three risk communities can always be identified as early warning signs. The contagion relationship between and within the three risk communities describes the dynamic core structure of risk contagion in global stock markets. The three risk communities have strong geographical attributes. This study's empirical conclusion will improve the concept of real-time hierarchical risk management, as the findings demonstrate that the risk management of the international stock market system must be divided into two steps: firstly, dynamic monitoring risk contagion among a small number of communities to identify the main path of risk contagion among global stock markets; secondly, use the regional characteristics of each risk community to implement real-time risk management. In addition, this study provides policy recommendations regarding the role of risk-contagion in emerging stock markets and the idea of “inter-regional and within-regional” risk governance.
The study makes the following contributions. Firstly, the high-dimensional matrix-valued factor model is introduced to the study of risk contagion in global stock markets. The study improves the model's robust estimation to effectively reveal risk contagion's dynamic core structure, expand the model's scope, and provide new opportunities for a follow-up study on financial risk contagion. Secondly, the paper utilizes the model proposed by Diebold and Yilmaz (2012) to analyze the time-varying volatility spillover effect of 21 developed and emerging stock markets from four geographical regions. The model and sample data provides a more comprehensive and clear understanding of geographical relationships and financial risk. Lastly, based on the identified dynamic core contagion relationship between a small number of risk communities and their market composition, the real-time hierarchical risk management concept proposed in this study can provide a useful reference and method of supervision for the real-time early warning signs of risk contagion in international stock markets.
Keywords:  Stock Market    Risk Contagion    Real-Time Hierarchical Management    Emerging Markets such as Chinese Mainland
JEL分类号:  C32   C61   G15  
基金资助: * 本文感谢国家自然科学基金面上项目(71473279)和国家社会科学基金重大项目(15ZDC024)资助。
通讯作者:  苏治,经济学博士,教授,中央财经大学统计与数学学院,中央财经大学金融学院,E-mail:suzhi1218@163.com.   
作者简介:  刘程程,经济学博士,讲师,首都经济贸易大学统计学院,E-mail:ccliu@cueb.edu.cn.宋鹏,博士研究生,中央财经大学统计与数学学院,E-mail:songpeng1101@126.com.
引用本文:    
刘程程, 苏治, 宋鹏. 全球股票市场间风险传染的测度、监管及预警[J]. 金融研究, 2020, 485(11): 94-112.
LIU Chengcheng, SU Zhi, SONG Peng. Measurement,Supervision and Early Warning of Risk Contagionamong Global Stock Markets. Journal of Financial Research, 2020, 485(11): 94-112.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2020/V485/I11/94
[1] 巴曙松和严敏,2009,《股票价格与汇率之间的动态关系——基于中国市场的经验分析》,《南开经济研究》第3期,第48~64页。
[2] 方毅和张屹山,2007,《国内外金属期货市场 “风险传染” 的实证研究》,《金融研究》第5期,第133~146页。
[3] 宫晓琳,2012,《宏观金融风险联动综合传染机制》,《金融研究》第5期,第56~69页。
[4] 韩艾、洪永淼和汪寿阳,2009,《区间事件分析法——次贷危机对中资银行的影响研究》,《管理评论》第2期,第53~61页。
[5] 李政、梁琪和涂晓枫,2016,《我国上市金融机构关联性研究——基于网络分析法》,《金融研究》第8期,第95~110页。
[6] 刘晓星、段斌和谢福座,2011,《股票市场风险溢出效应研究:基于 EVT-Copula-CoVaR 模型的分析》,《世界经济》第11期,第145~159页。
[7] 宋鹏和胡永宏,2017,《基于矩阵值因子模型的高维已实现协方差矩阵建模》,《统计研究》第11期,第109~117页。
[8] 杨子晖和周颖刚,2018,《全球系统性金融风险溢出与外部冲击》,《中国社会科学》第12期,第70~91页。
[9] 张磊,2013,《基本面关联还是市场恐慌?——金融危机跨国传染渠道的文献综述及其警示》,《经济社会体制比较》第3期,第237~246页。
[10] 钟莉、唐勇和朱鹏飞,2019,《我国金融市场间联动效应研究——基于混频Copula模型》,《系统科学与数学》第5期,第755~772页。
[11] Acharya, V. V., Cooley, T., and Richardson, M. 2010. “Manufacturing Tail Risk: A Perspective on the Financial Crisis of 2007-2009” Foundations and Trends in Finance, 4(4):247~325.
[12] Boyer, B. H., Kumagai, T., and Yuan, K. 2006. “How Do Crises Spread? Evidence from Accessible and Inaccessible Stock Indices” Journal of Finance, 61(2):957~1003.
[13] Callot, L., Kock, A. B., and Medeiros, M. C. 2017. “Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice” Journal of Applied Econometrics, 32(1):140~158.
[14] Calvo, G. A., and Mendoza, E. G. 2000. “Capital-Markets Crises and Economic Collapse in Emerging Markets: An Informational-Frictions Approach” The American Economic Review, 90(2):59~64.
[15] Chen, E. Y., and Chen, R. 2019. “Modeling Dynamic Transport Network with Matrix Factor Models: with an Application to International Trade Flow” Working Paper.
[16] Diebold, F. X., and Yilmaz, K. 2009. “Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets” The Economic Journal, 119(534):158~171.
[17] Diebold, F. X., and Yilmaz, K. 2012. “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers” International Journal of Forecasting, 28(1):57~66.
[18] Hart, O., and Zingales, L. 2011. “A New Capital Regulation for Large Financial Institutions” American Law and Economics Review, 13(2):453~490.
[19] Kaiser, H. F. 1958. “The Varimax Criterion for Analytic Rotation in Factor Analysis” Psychometrika, 23(3):187~200.
[20] King, M. A., and Wadhwani, S. 1990. “Transmission of Volatility between Stock Markets” Review of Financial Studies, 3(1):5~33.
[21] Koop, G., Pesaran, M. H. and Potter, S. M. 1996. “Impulse Response Analysis in Nonlinear Multivariate Models” Journal of Econometrics, 74(1):119~147.
[22] Lam, C., and Yao, Q. 2012. “Factor Modeling for High-Dimensional Time Series: Inference for the Number of Factors” The Annals of Statistics, 40 (2):694~726.
[23] Mink, M., and De Haan,J. 2013. “Contagion during the Greek Sovereign Debt Crisis” Journal of International Money and Finance, 34:102~113.
[24] Peng, Y., and Ng, W. L. 2012. “Analyzing Financial Contagion and Asymmetric Market Dependence with Volatility Indices via Copulas” Annals of Finance, 8(1):49~74.
[25] Pesaran, H. H., and Shin, Y. 1998. “Generalized Impulse Response Analysis in Linear Multivariate Models” Economics Letters, 58(1):17~29.
[26] Wang, D., Liu, X., and Chen, R. 2019. “Factor Models for Matrix-Valued High-Dimensional Time Series” Journal of Econometrics, 208(1):231~248.
[27] Yang, J., and Zhou, Y. 2013. “Credit Risk Spillovers among Financial Institutions around the Global Credit Crisis: Firm-Level Evidence” Management Science, 59(10):2343~2359.
[1] 宫晓莉, 熊熊. 波动溢出网络视角的金融风险传染研究[J]. 金融研究, 2020, 479(5): 39-58.
[2] 邹文理, 王曦, 谢小平. 中央银行沟通的金融市场响应──基于股票市场的事件研究[J]. 金融研究, 2020, 476(2): 34-50.
[3] 陈运森, 黄健峤. 股票市场开放与企业投资效率——基于“沪港通”的准自然实验[J]. 金融研究, 2019, 470(8): 151-170.
[4] 陈国进, 丁杰, 赵向琴. “好”的不确定性、“坏”的不确定性与股票市场定价——基于中国股市高频数据分析[J]. 金融研究, 2019, 469(7): 174-190.
[5] 谢谦, 唐国豪, 罗倩琳. 上市公司综合盈利水平与股票收益[J]. 金融研究, 2019, 465(3): 189-207.
[6] 许荣, 刘成立. 限制交易政策如何影响期现关系?——对股指期货价格发现功能的实证检验[J]. 金融研究, 2019, 464(2): 154-168.
[7] 陈坚, 张轶凡. 中国股票市场的已实现偏度与收益率预测[J]. 金融研究, 2018, 459(9): 107-125.
[8] 李苍舒, 沈艳. 风险传染的信息识别——基于网络借贷市场的实证[J]. 金融研究, 2018, 461(11): 98-118.
[9] 杨子晖, 陈雨恬, 谢锐楷. 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J]. 金融研究, 2018, 460(10): 19-37.
[10] 杨晓兰, 金雪军. 我国股票市场熔断机制的磁力效应:基于自然实验的证据[J]. 金融研究, 2017, 447(9): 161-177.
[11] 苟文均, 袁鹰, 漆鑫. 债务杠杆与系统性风险传染机制—基于CCA模型的分析[J]. 金融研究, 2016, 429(3): 74-91.
[12] 尹力博, 柳依依. 中国商品期货金融化了吗?—来自国际股票市场的证据[J]. 金融研究, 2016, 429(3): 189-206.
[13] 郭永济, 张谊浩. 空气质量会影响股票市场吗?[J]. 金融研究, 2016, 428(2): 71-85.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1