Please wait a minute...
金融研究  2019, Vol. 473 Issue (11): 112-132    
  本期目录 | 过刊浏览 | 高级检索 |
我国商业银行逆周期资本监管的锚定指标选取
王擎, 刘鹏, 田娇
西南财经大学中国金融研究中心, 四川成都 611130;
中国银保监会,北京 100033;
西南政法大学商学院,重庆 401120
Countercyclical Capital Regulation of Commercial Banks in China: Selecting an Anchoring Indicator
WANG Qing, LIU Peng, TIAN Jiao
Institute of Chinese Financial Studies, Southwestern University of Finance and Economics;
China Banking and Insurance Regulatory Commission;
Business School, Southwest University of Political Science and Law
下载:  PDF (1348KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文依据巴塞尔委员会提出的逆周期资本监管思想,以各类信贷指标为基础,通过绘制ROC曲线并计算AUC值,选取适合我国的具体锚定指标。本文认为,好的锚定指标需要满足及时性、稳定性、可解释性以及可获取性等标准。研究结果表明:房地产价格趋势缺口、房地产贷款趋势缺口、个人住房抵押贷款趋势缺口以及消费贷款趋势缺口等指标符合锚定指标的标准,可作为逆周期资本监管锚定指标使用,并且组合锚定指标的预警能力和稳定性优于单个锚定指标。本文从落实锚定指标和提高挂钩变量预警效果的角度,提出了更为精细的信贷类别指标,为推动我国逆周期资本计提及监管实施提供了决策参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王擎
刘鹏
田娇
关键词:  逆周期资本监管  锚定指标  预警能力    
Summary:  As an important part of macroprudential supervision, countercyclical capital requirements play a primary role in alleviating systemic risks caused by excessive bank credit and promoting financial stability. Although countercyclical capital regulation has been proposed for more than eight years, China has not yet promulgated the specific regulatory rules and requirements. A key reason is the lack of both a unified specific method and time-tested indicators as a reference to establish the anchoring indicator, which is an important basis for calculating, dynamically adjusting, and releasing countercyclical capital. Should the generalized “credit/GDP” guide recommended by the Basel Committee be adopted? Is it in line with the risk characteristics of the Chinese banking industry? Are there any other indicators and elements of particular concern? What is the mechanism for selecting indicators? Discussing these issues will enrich the discussion surrounding countercyclical capital supervision and promote policy implementation in China.
This paper first reviews the countercyclical capital regulation guidance proposed by the Basel Committee and its latest implementation in various countries, and chooses 15 candidates widely used in practice, together with three classes of anchor variables proposed by the Bank for International Settlements (Drehmann et al., 2011). Considering the risk characteristics of the Chinese banking industry and data accessibility, six credit variables are added to reflect the actual loan structure in China. Altogether, these 21 candidates provide 84 anchor variables through four forms of transformation and finally yield 105 candidate indicators.
The candidate indicators are then screened and verified. First, this paper replaces “systemic financial risk/financial crisis,” which has not happened in China, with the “downward stage” of the middle-term financial cycle. Based on the latest literature, the first quarter of 2011 is set as the starting point of the “downward stage”, which serves as a reference time node for operating the countercyclical regulation. Second, by making use of the method in Drehmann and Juselius (2014), this paper draws the Receiver Operating Characteristic (ROC) curve with the data at the time of the first quarter of 2010 and respectively calculates the Area Under the Curve (AUC) value, which measures the candidate indicators' ability to predict the outbreak of systemic financial risks one year later. Third, this paper ranks each indicator by examining whether it meets the criteria of static timeliness, dynamic stability, economic interpretability, and data accessibility when used for early warning of systemic risk, so as to complete the identification process of anchor indicators. Finally, this paper carries out robustness tests by determining the starting time nodes of the “downward stage” in three financial short cycles and checking whether the ROC curve method used obtains consistent indicators in different contexts in a financial downturn period.
The empirical results show that specific industry indicators such as the trend gap of real estate price, and specific categories of credit indicators, such as the trend gap of real estate loan, the trend gap of personal housing mortgage, and the trend gap of consumer credit, can track potential risks from multiple dimensions, and thus can be used as anchor indicators for countercyclical capital supervision. In addition, the combined anchor index has a higher early warning ability and stability than single anchor indicators. These conclusions improve the precision of optimal anchor indicators to reflect systemic risk by focusing on classified credit and industry credit instead of general credit. By exploring anchor indicators and improving the early warning effect of linked variables, this paper provides practical guidelines for decision making and promoting the operation of countercyclical capital regulation in China. Its findings may also provide inspiration for other countries or regions.
This paper contributes to the literature in several ways. First, the ROC curve method is used for the first time to identify the pros and cons of China's countercyclical anchor indicators and ensure the reliability of the conclusions. Second, the candidate indicators have been comprehensively arranged and scientifically transformed, which makes it possible to select the most effective anchor indicators. Third, the period from 2004 through 2018 contains relatively complete economic and financial cycles, and thus reflects rich information and offers a basis for empirical research on countercyclical policies. Finally, this paper links countercyclical capital regulation in China to personal housing credit and consumer credit as anchor indicators, which suggests avenues for viable countercyclical capital regulation mechanisms in China.
Keywords:  Countercyclical Capital Regulation    Anchor Indicator    Early Warning Capacity
JEL分类号:  E6   G18   G21  
基金资助: * 本文感谢研究阐释党的十九大精神国家社科基金专项“新时代经济转型背景下我国经济高杠杆的风险防范与监管研究”(18VSJ073)、国家自科基金专项项目(71950010)、国家自然科学青年基金项目(批准号:71903018)的资助。
作者简介:  王 擎,经济学博士,教授,西南财经大学中国金融研究中心,E-mail:wqing@swufe.edu.cn.
刘 鹏,博士研究生,西南财经大学中国金融研究中心,中国银保监会,E-mail:blade23abc@sohu.com.
田 娇,经济学博士,副教授,西南政法大学商学院,E-mail:tianjiaotj@sina.com.
引用本文:    
王擎, 刘鹏, 田娇. 我国商业银行逆周期资本监管的锚定指标选取[J]. 金融研究, 2019, 473(11): 112-132.
WANG Qing, LIU Peng, TIAN Jiao. Countercyclical Capital Regulation of Commercial Banks in China: Selecting an Anchoring Indicator. Journal of Financial Research, 2019, 473(11): 112-132.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V473/I11/112
[1]陈雨露和马勇,2012,《中国逆周期资本缓冲的“挂钩变量”选择:一个实证评估》,《教学与研究》第12期,第5~16页。
[2]崔光华,2017,《巴塞尔协议Ⅲ逆周期资本缓冲机制在我国的适用性》,《财经问题研究》第3期,第60~66页。
[3]范小云、袁梦怡和肖立晟,2017,《理解中国的金融周期:理论、测算与分析》,《国际金融研究》第1期,第28~38页。
[4]李文泓和林凯旋,2013,《关于用广义信贷/GDP分析我国银行业系统性风险的研究》,《金融监管研究》第6期,第13~30页。
[5]李文泓和罗猛,2011,《巴塞尔委员会逆周期资本框架在我国银行业的实证分析》,《国际金融研究》第6期,第81~87页。
[6]马勇、冯心悦和田拓,2016,《金融周期与经济周期——基于中国的实证研究》 ,《国际金融研究》第10期,第3~14页。
[7]王博和李昊然,2018,《中国金融周期测度及国际比较研究》,《经济学动态》第6期,第63~78页。
[8]王周伟、胡德红和伏开宝,2015,《基于系统性风险指数的逆周期资本缓冲动态提取机制研究》 ,《东南大学学报(哲学社会科学版)》第5期,第59~67页。
[9]杨新兰和吴博,2016,《逆周期缓冲机制在中国的适用性——基于巴塞尔委员会推荐模型的检验》,《中南财经政法大学学报》第1期,第107~113页。
[10]伊楠和张斌,2016,《度量中国的金融周期》,《国际金融研究》第6期,第13~23页。
[11]张小波,2014,《逆周期资本缓冲机制的拓展及其在中国的适用性分析》 ,《国际金融研究》第5期,第71~79页。
[12]朱波和卢露,2013,《中国逆周期缓冲资本调整指标研究——基于金融体系脆弱时期的实证分析》 ,《国际金融研究》第10期,第86~96页。
[13]朱太辉和黄海晶,2018,《中国金融周期:指标、方法和实证》,《金融研究》第12期,第59~75页。
[14]Basel Committee of Banking Supervision, 2010a, “Basel III: A Global Regulatory Framework for More Resilient Banks and Banking System”, http://www.bis.orgpublbcbs189.pdf/2010a.
[15]Basel Committee of Banking Supervision, 2010b, “Guidance for Nation Authorities Operating the Countercyclical Capital Buffer”, http://www.bis.orgpublbcbs187.pdf/2010b.
[16]Basel Committee of Banking Supervision, 2017, “Range of Practices in Implementing the Countercyclical Capital Buffer Policy”, http://www.bis.orgbcbspubl/d407.pdf/2017.
[17]Borio, C., and P. Lowe, 2002, “Assessing the Risk of Banking Crises”, BIS Quarterly Review, 12:43-54.
[18]Borio, C., 2014, “The Financial Cycle and Macroeconomics: What Have We Learnt?”, Journal of Banking & Finance, 45(8):182-198.
[19]Drehmann, M., C.E.V. Borio, L. Gambacorta, G. Jiminez, and C. Trucharte, 2010, “Countercyclical Capital Buffers: Exploring Options”, SSRN Electronic Journal, 68(317):1-18.
[20]Drehmann, M, C. Borio, K. Tsatsaronis, 2011, “Anchoring Countercyclical Capital Buffers: The Role of Credit Aggregates”, BIS Working Papers, 7(4):189-240.
[21]Drehmann, M., and K. Tsatsaronis, 2014, “The Credit-to-GDP Gap and Countercyclical Capital Buffers: Questions and Answers”, BIS Quarterly Review, 3:55-73.
[22]Drehmann, M., and M. Juselius, 2014, “Evaluating Early Warning Indicators of Banking Crises: Satisfying Policy Requirements”, International Journal of Forecasting, 30(3):759-780.
[23]Edge, R. M., and R. R. Meisenzahl, 2011, “The Unreliability of Credit-to-GDP Ratio Gaps in Real-Time: Implications for Countercyclical Capital Buffers”, SSRN Electronic Journal, 7(4):261-298.
[24]Ferreira, L. N., and M. I. Nakane, 2015, “Macroprudential Policy in a DSGE Model: Anchoring the Countercyclical Capital Buffer”, Banco Central de Brasil Working Papers, (407).
[25]Gonzalez, R. B., J. Lima, and L. Marinho, 2015, “Countercyclical Capital Buffers: Bayesian Estimates and Alternatives Focusing on Credit Growth”, Central Bank of Brazil Working Papers, No 384.
[26]Kalatie, S., H. Laakkonen, and E. Tölö, 2015, “Indicators Used in Setting the Countercyclical Capital Buffer”, Social Science Electronic Publishing, 4(3):230-37.
[27]Kauko, K., 2012, “Triggers for Countercyclical Capital Buffers”, https://helda.helsinki.fi/bof/bitstream/handle/ 123456789/8516/170303.pdf/2012.
[28]Laeven, L., and F. Valencia, 2012, “Systemic Banking Crisis: A New Database”, International Monetary Fund, WP/12/163.
[29]Pepe, M., G. Longton, and H. Janes, 2009, “Estimation and Comparison of Receiver Operating Characteristic Curves”, Stata Journal, 9(1):1.
[30]Repullo, R., and S. J. Saurina, 2011, “The Countercyclical Capital Buffer of Basel III: A Critical Assessment”, CEPR Discussion Paper No. DP8304.
[1] 邹文理, 王曦, 谢小平. 中央银行沟通的金融市场响应──基于股票市场的事件研究[J]. 金融研究, 2020, 476(2): 34-50.
[2] 张斌, 熊婉婷. 经济结构转型与“双支柱”调控框架[J]. 金融研究, 2019, 474(12): 92-105.
[3] 黄益平, 曹裕静, 陶坤玉, 余昌华. 货币政策与宏观审慎政策共同支持宏观经济稳定[J]. 金融研究, 2019, 474(12): 70-91.
[4] 方意, 王晏如, 黄丽灵, 和文佳. 宏观审慎与货币政策双支柱框架研究——基于系统性风险视角[J]. 金融研究, 2019, 474(12): 106-124.
[5] 芦东, 周梓楠, 周行. 开放经济下的“双支柱”调控稳定效应研究[J]. 金融研究, 2019, 474(12): 125-146.
[6] 徐光, 赵茜, 王宇光. 定向支持政策能缓解民营企业的融资约束吗?——基于民营企业债务融资支持工具政策的研究[J]. 金融研究, 2019, 474(12): 187-206.
[7] 马骏, 何晓贝. 货币政策与宏观审慎政策的协调[J]. 金融研究, 2019, 474(12): 58-69.
[8] 王信, 贾彦东. 货币政策和宏观审慎政策的关联及启示——基于英格兰银行的经验[J]. 金融研究, 2019, 474(12): 38-57.
[9] 司登奎, 葛新宇, 曾涛, 李小林. 房价波动、金融稳定与最优宏观审慎政策[J]. 金融研究, 2019, 473(11): 38-56.
[10] 宫汝凯, 徐悦星, 王大中. 经济政策不确定性与企业杠杆率[J]. 金融研究, 2019, 472(10): 59-78.
[11] 宋全云, 李晓, 钱龙. 经济政策不确定性与企业贷款成本[J]. 金融研究, 2019, 469(7): 57-75.
[12] 张莉, 魏鹤翀, 欧德赟. 以地融资、地方债务与杠杆——地方融资平台的土地抵押分析[J]. 金融研究, 2019, 465(3): 92-110.
[13] 王永钦, 徐鸿恂. 杠杆率如何影响资产价格?——来自中国债券市场自然实验的证据[J]. 金融研究, 2019, 464(2): 20-39.
[14] 李苍舒, 沈艳. 风险传染的信息识别——基于网络借贷市场的实证[J]. 金融研究, 2018, 461(11): 98-118.
[15] 刘晓光, 刘元春. 杠杆率重估与债务风险再探讨[J]. 金融研究, 2018, 458(8): 33-50.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1