Please wait a minute...
金融研究  2019, Vol. 472 Issue (10): 188-206    
  本期目录 | 过刊浏览 | 高级检索 |
信息互动、投资决策与股票价格——基于机构投资者信息网络的分析
郭白滢, 周任远
华东师范大学经济学院,上海 200241;
上海财经大学商学院,上海 200433
Information Interaction, Investment Decisions, and Stock Prices:Analysis Based on Institutional Investor Information Networks
GUO Baiying, ZHOU Renyuan
School of Economics, East China Normal University;
School of Business, Shanghai University of Finance and Economics
下载:  PDF (1256KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 机构投资者之间存在着广泛的信息互动,其中包括信息共享与社会学习。本文基于2005-2018年我国A股市场与公募证券投资基金市场数据,应用社会关系网络理论实证分析了信息互动对于基金持仓决策以及股票市场价格的影响。结果表明:(1)信息互动对于基金持仓决策具有显著影响,且在不同决策情景与市场行情下其影响具有差异;(2)基金信息互动的影响可以分为“同城效应”和“异地效应”,不同城市的两种效应存在显著差异,并且不同城市基金的市场影响力也有所不同;(3)基金信息互动通过提高市场定价效率对于股价长期特质波动具有降低作用。本文基于社会关系网络理论分析了私有信息在机构投资者之间传播产生的影响,为认识机构投资者决策行为与股票市场价格异象提供了新的维度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭白滢
周任远
关键词:  机构投资者  基金  信息网络  信息互动    
Summary:  Institutional investors often share information with and learn from others in the market. This information interaction promotes the dissemination of private information among investors, and can directly affect their decision-making and asset pricing. Thus, research on the impact and mechanism of the information interaction among investors can help explain the behavior of institutional investors and some of the anomalies in asset pricing. Based on social network theory, this paper empirically analyzes how the information interaction between funds influences their decision-making and stock pricing.
First, this paper uses Pareek’s (2009) method to establish the fund information networks. Specifically, if two funds are heavy holders of the same shares, they are deemed to be “connected.” In this way, all of the funds connected to a fund constitute its information network. An information network is a typical social network based on the exchange of information, which can be regarded as the scope and medium of the information interaction. Second, we examine the relationship between the position decision-making of funds and that of the members of their information networks. This relationship can be considered to reflect the influence of the information interaction in controlling public information. We further consider whether the effects of the information interaction under different decision-making scenarios and market situations are significant and different. We then divide the effects of the information interaction into the effects in the same city and different cities, and test whether there are any significant differences. Finally, we test whether the effects of the information interaction vary in terms gender, length of service of fund managers, and size of the information networks. In addition, we build a stock information network based on the fund information network to study how the information interaction affects the stock pricing. A stock’s information network is composed of all of the funds that are heavy holders of this stock and their information network members. The structural characteristics of the network determine the efficiency of the information sharing among the funds. We verify the impact of the information sharing on stock prices and its mechanism by examining the relationships between the structural characteristics, pricing efficiency, and stock prices.
Our sample comprises all of the A-share listed companies on the Shanghai and Shenzhen Stock Exchanges from the first quarter of 2005 to the fourth quarter of 2018 and the equity and mixed open-ended funds. The data on the positions of the funds are from the Wind database. The financial data on the listed companies, the stock transaction data, and the basic information about the funds are all from the CSMAR database.
The results show that information interaction has a significant impact on the funds’ position decision-making, and the impact is significantly different under different decision-making scenarios and market situations. In addition, the subjective factors (fund managers’ gender and length of service) and objective factors (size of the information networks) influence the effect of the information interaction. In Beijing, Guangzhou, and Shenzhen, the effects of other cities are significantly greater than those of the same city, while the case is the opposite in Shanghai.Moreover, information sharing reduces the long-term idiosyncratic volatility of the stock prices, and the pricing efficiency of the stock market plays a mediating role.
This paper extends the application of social network theory to research on financial markets by exploring the relationship between decision-making on individual investments and the corresponding market performance. Our findings contribute to our understanding of the decision-making of institutional investors and means of controlling the market risk caused by herding behavior. Our quantitative findings regarding the information interaction among institutional investors can help regulators identify the “head sheep” of funds in the market and avoid irrational and excessive behavioral synergies. We also discuss the factors that influence the information interaction of funds, which can help the regulators to track the transmission of public and private information among institutional investors, prevent and monitor insider trading and stock price operations, and establish fair competition in the market.
Keywords:  Institutional Investors    Fund    Information Network    Information Interaction
JEL分类号:  G02   G11   G24  
基金资助: 国家社科基金一般项目(19BGL106)、国家自然科学基金项目 (71602057)和上海市哲学社会科学规划一般课题(2019BGL039)的资助,
作者简介:  郭白滢,经济学博士,讲师,华东师范大学经济学院,E-mail:byguo@jjx.ecnu.edu.cn.
周任远(通讯作者),博士研究生,上海财经大学商学院,E-mail:xiaozhoua127@126.com.
引用本文:    
郭白滢, 周任远. 信息互动、投资决策与股票价格——基于机构投资者信息网络的分析[J]. 金融研究, 2019, 472(10): 188-206.
GUO Baiying, ZHOU Renyuan. Information Interaction, Investment Decisions, and Stock Prices:Analysis Based on Institutional Investor Information Networks. Journal of Financial Research, 2019, 472(10): 188-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V472/I10/188
[1] 陈新春,刘阳和罗荣华,2017,《机构投资者信息共享会引来黑天鹅吗?——基金信息网络与极端市场风险》,《金融研究》第2期,第144~159页。
[2] 李学峰和钟林楠,2017,《投资经验能有效降低羊群效应吗?——以开放式基金的个体为例》,《证券市场导报》第5期,第47~56页。
[3] 刘京军和苏楚林,2016,《传染的资金:基于网络结构的基金资金流量及业绩影响研究》,《管理世界》第1期,第54~65页。
[4] 刘军,2009,《整体网分析讲义》,格致出版社,第1版.
[5] 任曙明和张静,2013,《补贴、寻租成本与加成率——基于中国装备制造企业的实证研究》,《管理世界》第10期,第118~129页。
[6] 申宇、赵静梅和何欣,2016,《校友关系网络、基金投资业绩与“小圈子”效应》,《经济学(季刊)》第1期,第403~428页。
[7] 史金艳、陈婷婷和魏殿凤,2016,《基金经理性别与风险承担——基于股票型和混合偏股型开放式基金的实证》,《投资研究》第3期,第105~118页。
[8] 温忠麟、张雷和侯杰泰,2004,《中介效应检验程序及其应用》,《心理学报》第5期,第614~620页。
[9] 肖欣荣、刘健和赵海健,2012,《机构投资者行为的传染——基于投资者网络视角》,《管理世界》第12期,第35~45页。
[10] Arnswald, T, 2001, “Investment Behavior of German Equity Fund Managers—An Exploratory Analysis of Survey Data”.Discussion Paper.
[11] Bala, V. and Goyal, S.,1998. “Learning from Neighbours”,Review of Economic Studies, 65(3), pp.595~621.
[12] Bikhchandani, S. and D. Hirshleifer, and I. Welch, 1992, “A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades”, Journal of Political Economy, 100(5), pp.992~1026.
[13] Bikhchandani, S. and S. Sharma, 2001, “Herd Behavior in Financial Market”, IMF Staff Papers, No.47, pp.279~310.
[14] Blocher, J and R. E. Whaley,2014, “Passive Investing: The Role of Securities Lending”.Social Science Electronic Publishing.
[15] Brown, N. C., K. D. Wei and R. Wermers, 2014, “Analyst Recommendations, Mutual Fund Herding, and Overreaction in Stock Prices”, Management Science, 60(1), pp.1~20.
[16] Cohen, L., F. Andrea and M. Christopher. 2008, “The Small World of Investing: Board Connections and Mutual Fund Returns”, Journal of Political Economy, 116 (5), pp.951~979.
[17] Cremers, K. J. M., and A. Petajisto., 2009, “How Active Is Your Fund Manager? A New Measure That Predicts Performance”.Review of Financial Studies, 22(9), pp.3329~3365.
[18] Froot, K. A., D. S. Scharfstein, and J. C. Stein., 1992, “Herdon the Street: Informational Inefficiencies in a Market with Short Term Speculation”. Journal of Finance,47(2), pp.1461~1484.
[19] Gray, W. R. 2008, “Facebook for Finance: Why do Investors Share Ideas via Their Social Networks?”, Social Science Electronic Publishing.
[20] Gray, W. R., S. Crawford, and A. E. Kern. 2012, “Do Fund Managers Identify and Share Profitable Ideas? Working paper.2012.
[21] Han, B. and L. Yang, 2013, “Social Networks, Information Acquisition and Asset Prices”, Management Science,59(6), pp. 1444~1457.
[22] Hong, H., J. D. Kubikand J. C. Stein. 2005, “The Neighbor’s Portfolio: Word-of-Mouth Effects in the Holdings and Trades of Money Managers”, Journal of Finance, 60(6), pp. 2801~2824.
[23] Hou, K., and T. J. Moskowitz, 2005, “Market Frictions, Price Delay, and the Cross-Section of Expected Returns”, Review of Financial Studies, 18(3), pp. 981~1020.
[24] Jegadeesh, N. and W. Kim. 2009, “Do Analysts Herd? An Analysis of Recommendations and Market Reactions”, Review of Financial Studies, 23(2), pp. 901~937.
[25] Kolaczyk, E. D., and G. Csárdi, 2014, “Statistical Analysis of Network Data with R”, Springer New York.
[26] Ozsoylev.H.N.,2005, “Asset Pricing Implications of Social Networks”,Social Science Electronic Publishing.
[27] Ozsoylev. H. N., J. Walden and M. D, Yavuz,2014, “Investor Networks in the Stock Market”, Review of Financial Studies, 27(5),1323~1366.
[28] Pareek, A. 2009, “Information Networks: Implications for Mutual Fund Trading Behavior and Stock Returns”, Working Paper.
[29] Pool, V.K., N. Stoffman and S.E. Yonker, 2015, “The People in Your Neighborhood: Social Interactions and Mutual Fund Portfolios”. Journal of Finance, 70(6), pp.2679~2732.
[30] Scharfstein, David S. and Stein, Jeremy C.1990,“Herd Behavior and Investment.”American Economic Review, 1990, 80(3),pp.465~79.
[31] Shiller, R. J. and J. Pound.1989, “Survey Evidence on Diffusion of Interest and Information among Investors”, Journal of Economic Behavior and Organization, 12(1), pp.47~66.
[32] Stein, J. C., 2008, “Conversations among Competitors”. American Economic Review. 98(5), pp.2150~2162.
[33] Wermers, R., 2000, “Mutual Fund Performance: An Empirical Decomposition into Stock-Picking Talent, Style, Transactions Costs, and Expenses”, Journal of Finance, 55(4), pp.1655~1695.
[1] 李志冰, 刘晓宇. 基金业绩归因与投资者行为[J]. 金融研究, 2019, 464(2): 188-205.
[2] 邵新建, 王兴春, 贾中正, 廖静池. 投资银行-机构投资者关系、“捧场”与IPO中的利益问题[J]. 金融研究, 2019, 473(11): 170-188.
[3] 李科, 陆蓉, 夏翊, 胡凡. 基金经理更换、股票联动与股票价格[J]. 金融研究, 2019, 463(1): 188-206.
[4] 代昀昊. 机构投资者、所有权性质与权益资本成本[J]. 金融研究, 2018, 459(9): 143-159.
[5] 刘京军. 货币市场基金的市场集中度影响了其风险承担吗?[J]. 金融研究, 2018, 457(7): 90-107.
[6] 李春涛, 薛原, 惠丽丽. 社保基金持股与企业盈余质量:A股上市公司的证据[J]. 金融研究, 2018, 457(7): 124-142.
[7] 余音, 姚彤, 张峥, 江嘉骏. 期末溢价与基金家族策略——来自中国公募基金市场的证据[J]. 金融研究, 2018, 455(5): 154-171.
[8] 庞家任, 周桦, 王玮. 上市公司成立并购基金的影响因素及财富效应研究[J]. 金融研究, 2018, 452(2): 153-171.
[9] 曾志远, 蔡东玲, 武小凯. “监督管理层”还是“约束大股东”?基金持股对中国上市公司价值的影响[J]. 金融研究, 2018, 462(12): 157-173.
[10] 陈新春, 刘阳, 罗荣华. 机构投资者信息共享会引来黑天鹅吗? ——基金信息网络与极端市场风险[J]. 金融研究, 2017, 445(7): 140-155.
[11] 高昊宇, 杨晓光, 叶彦艺. 机构投资者对暴涨暴跌的抑制作用:基于中国市场的实证[J]. 金融研究, 2017, 440(2): 163-178.
[12] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115-129.
[13] 罗进辉, 向元高, 金思静. 中国资本市场低价股的溢价之谜[J]. 金融研究, 2017, 439(1): 191-206.
[14] 代冰彬, 岳衡. 货币政策、流动性不足与个股暴跌风险[J]. 金融研究, 2015, 421(7): 135-151.
[15] 黎文靖, 路晓燕. 机构投资者关注企业的环境绩效吗?——来自我国重污染行业上市公司的经验证据[J]. 金融研究, 2015, 426(12): 97-112.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1