Please wait a minute...
金融研究  2018, Vol. 457 Issue (7): 34-48    
  本期目录 | 过刊浏览 | 高级检索 |
基于混频向量自回归模型的宏观经济预测
张劲帆, 刚健华, 钱宗鑫, 张龄琰
香港中文大学(深圳)经济管理学院/深圳高等金融研究院,广东深圳 518172;
中国财政金融政策研究中心/中国人民大学财政金融学院,北京 100872;
美国哥伦比亚大学,美国纽约
Macro-economic Forecasts Based on the MF-BVAR
ZHANG Jinfan, GANG Jianhua, QIAN Zongxin, ZHANG Lingyan
School of Management and Economics, Chinese University of Hong Kong (Shenzhen)/ Shenzhen Finance Institute/ International Monetary Institute, Renmin University of China;
China Financial Policy Research Center, School of Finance, Renmin University of China;
Department of Industrial Engineering and Operations Research, Columbia University
下载:  PDF (1560KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究利用中国宏观经济指标构建了基于贝叶斯估计的混合频率向量自回归模型(MF-BVAR),并对该模型预测中国宏观经济运行情况的效果进行了检验。本文模型在允许多变量、不同频数据共存的条件下提高了模型估计的自由度,从而实现高精度预测。实证结果显示,在对宏观经济管理部门所关注的核心经济变量CPI、RPI和GDP等进行预测时,MF-BVAR模型相对于目前广泛应用的同频向量自回归模型和MIDAS模型,预测精度都有显著改善。本文亦发现房地产投资对于模型预测能力的重要作用,从样本外预测的角度佐证了房地产部门对于中国宏观经济的重要影响。本文也验证了中国股票市场表现不能对预测宏观经济运行提供额外贡献。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张劲帆
刚健华
钱宗鑫
张龄琰
关键词:  向量自回归  混合频率  经济预测  贝叶斯估计    
Abstract:  This paper constructs a Bayesian mixed frequency VAR (MF-BVAR) model to study the dynamics of China’s macro-economy and to forecast the key macro variables. The MF-BVAR model can nest high frequency macro information (e.g. capital market price) without compromising to the low frequency information (e.g GDP, investment) in economic projection. Empirical evidence shows that the MF-BVAR model dominates other classic models on forecasting key macro indicators such as CPI, RPI and GDP growth. The study further demonstrates that the real estate investment plays a significant role in forecasting China’s economic dynamics, while the stock market is insignificant in macro projection.
Key words:  VAR    Mixed Frequency    Forecasting    Bayesian Econometrics
JEL分类号:  C11   C32   C53  
基金资助: 本文得到国家自然科学基金项目(批准文号:71733004、71503257)资助。
作者简介:  张劲帆,经济学博士,副教授,香港中文大学(深圳)经济管理学院,深圳高等金融研究院,中国人民大学国际货币研究所,Email: zhangjinfan@cuhk.edu.cn.
刚健华,经济学博士,副教授,中国财政金融政策研究中心,中国人民大学财政金融学院,Email: jhgang@ruc.edu.cn.
张龄琰,硕士研究生,美国哥伦比亚大学,Email: lingyanzhang1995@126.com.
钱宗鑫(通讯作者),经济学博士,副教授,中国人民大学财政金融学院,Email: qianzx@ruc.edu.cn.
引用本文:    
张劲帆, 刚健华, 钱宗鑫, 张龄琰. 基于混频向量自回归模型的宏观经济预测[J]. 金融研究, 2018, 457(7): 34-48.
ZHANG Jinfan, GANG Jianhua, QIAN Zongxin, ZHANG Lingyan. Macro-economic Forecasts Based on the MF-BVAR. Journal of Financial Research, 2018, 457(7): 34-48.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2018/V457/I7/34
[1] 龚玉婷、陈强和郑旭,2014,《基于混频模型的CPI短期预测研究》,《统计研究》第31卷第12期,第25~31页。
[2] 何青、钱宗鑫和郭俊杰,2015,《房地产驱动了中国经济周期吗》,《经济研究》第12期,第41~53页。
[3] 刘汉和刘金全,2011,《中国宏观经济总量的实时预报与短期预测——基于混频数据模型的实证研究》,《经济研究》第3期,第4~17页。
[4] 李正辉和郑玉航,2015,《基于混频数据模型的中国经济周期区制监测研究》,《统计研究》第32卷第1期,第33~40页。
[5] 苏治、尹力博和方彤,2015,《量化宽松与国际大宗商品市场:溢出性、非对称性和长记忆性》,《金融研究》,第3期,第68~82页。
[6] 郑挺国和尚玉皇,2013,《基于金融指标对中国GDP的混频预测分析》,《金融研究》第9期,第16~29页。
[7] 郑挺国和尚玉皇,2016,《短期利率波动测度与预测:基于混频宏观-短期利率模型》,《金融研究》,第11期,第 47~62页。
[8] 周建和况明,2015,《中国宏观经济动态传导、可靠性及货币政策机制》,《经济研究》第2期,第31~46页。
[9] Baffigi, A., Golinelli, R., Parigi, G. 2004. “Bridge Models to Forecast the Euro Area GDP”. International Journal of Forecasting, 20 (3): 447~460.
[10] Bernanke, B., Gertler, M., Gilchrist, S. 1999. “The Financial Accelerator in a Quantitative Business Cycle Framework”. Handbook of Macroeconomics Volume 1 (Taylor, J., and Woodford, M. eds.), 1341~1393, Elsevier.
[11] Blasques, F., Koopman, F.J., Mallee, M., Zhang, Z. 2016. “Weighted Maximum Likelihood for Dynamic Factor Analysis and Forecasting with Mixed Frequency Data”. Journal of Econometrics, 193 (2): 405~417.
[12] Brockwell, P.J., Davis, R.A. 1987. “Time Series: Theory and Methods”. Journal of the American Statistical Association, 42 (1): 159~181.
[13] Chiu, C.W.J., Eraker, B., Forester, A.T., Kim, T.B., Seoane, H.D. 2011. “Estimating VAR's Sampled at Mixed Frequencies or Irregular Spaced Frequencies: Bayesian Approach”. Kansas City Federal Reserve Bank Economic Research Department Research Working Paper.
[14] Chatfield, C. 1993. “Calculating Interval Forecasts”. Journal of Business & Economic Statistics, 11 (2): 121~135.
[15] Creal, D., Schwaab, B., Koopman, S.J., Lucas, A. 2014. “Observation-driven Mixed Measurement Dynamic Factor Models with an Application to Credit Risk”. The Review of Economics and Statistics, 96(5): 898~915.
[16] Clements, M., Galvão, A.B., 2008. “Macroeconomic Forecasting with Mixed-frequency Data”. Journal of Business & Economic Statistics. 26: 546~554.
[17] Doan, T., Litterman, R.B. and Sims, C.A. 1984. “Forecasting and Conditional Projection Using Realistic Prior Distributions”. Econometric Reviews, 3 (1): 1~100.
[18] Eraker, B., Chiu, C.W.J., Foerster, A.T., Kim, T.B., Seoane, H.D. 2015. “Bayesian Mixed-frequency VARs”. Journal of Financial Economics, 13: 698~721.
[19] Foroni, C. and Massimiliano Marcellino. 2013. “A Survey of Econometric Methods for Mixed-frequency Data”. Norges Bank Research Working Paper.
[20] Foroni, C. and Marcellino, M., 2014. “A Comparison of Mixed Frequency Approaches for Nowcasting Euro Area Macroeconomic Aggregates”. International Journal of Forecasting, 30(3), pp.554~568.
[21] Ghysels, E., Santa-Clara, P. and Valkanov R. 2004. “The MIDAS Touch: Mixed Data Sampling Regression Models”. Cirano Working Papers. 5 (1): 512~517.
[22] Ghysels, E., 2016. “Macroeconomics and the Reality of Mixed Frequency Data”. Journal of Econometrics, 193(2), pp.294~314.
[23] Götz, T.B., Hecqb, A., Smeekesb, S. 2016. “Testing for Granger Causality in Large Mixed-frequency VARs”. Journal of Econometrics, 193: 418~432.
[24] Giordani, P., Pitt, M.K. and Kohn, R. 2011. “Bayesian Inference for Time Series State Space Models”. Handbook of Bayesian Econometrics. Oxford University Press.
[25] Kiyotaki, N., Moore, J. 1997. “Credit Cycles”. Journal of Political Economy, 105(2), 211~248.
[26] Kong, D., Liu, H., Wang, L. 2008. “Is There a Risk-return Trade-off? Evidences from Chinese Stock Markets”. Frontiers of Economics in China, 3 (1): 1~23.
[27] Koop, G., Dimitris, Korobilis. 2014. “A New Index of Financial Conditions”. European Economic Review, 71, 101~116.
[28] Kuzin, V., Marcellino, M., Schumacher, C. 2011. “MIDAS vs. Mixed-frequency VAR:Nowcasting GDP in the Euro Area”. International Journal of Forecasting, 27 (2): 529~542.
[29] Kilian, L., Taylor, M.P. 2003. “Why Is It so Difficult to Beat the Random Walk Forecast of Exchange Rates?” Journal of International Economics, 60 (1): 85~107.
[30] Litterman, R.B., 1986, “Forecasting With Bayesian Vector Autoregressions—Five Years of Experience”, Journal of Business & Economic Statistics, 4 (1): 25~38.
[31] Mariano, R. S. and Y. Murasawa. 2010. “A Coincident Index, Common Factors, and Monthly Real GDP”. Oxford Bulletin of Economics and Statistics, 72 (1): 27~46.
[32] Mariano, R. S. and Y. Murasawa. 2003. “A New Coincident Index of Business Cycles Based on Monthly and Quarterly Series”. Journal of Applied Econometrics, 18 (4): 427~443.
[33] Negro, M. D., and Schorfheide, F. 2011. “Bayesian Macro-econometrics”. The Oxford Handbook of Bayesian Econometrics, pp. 293–389. Oxford University Press.
[34] Schorfheide, F. and Song, D. 2012. “Real-Time Forecasting with a Mixed-Frequency VAR”. Federal Reserve Bank of Minneapolis Research Department Working Paper.
[35] Schorfheide, F. and Song, D., 2015. “Real-time Forecasting with a Mixed-frequency VAR”. Journal of Business & Economic Statistics, 33(3), pp.366~380.
[36] Sims, C.A. and Zha, T. 1998. “Bayesian Methods for Dynamic Multivariate Models”. International Economic Review, 39 (4): 949~968.
[37] Sims, C. A. 1980. “Macroeconomics and Reality”, Econometrica, 48 (1): 1~48.
[38] Zadrozny, P.A. 2008. “Estimating a Multivariate ARMA Model with Mixed Frequency Data: An Application to Forecasting U.S. GNP at Monthly Intervals”. CESifo Working Paper.
[39] Zadrozny, P.A. 1988. “Gaussian Likelihood of Continuous Time AR-MAX Models When Data are Stocks and Flows at Different Frequencies”. Econometric Theory, 4 (1): 108~124.
[1] 陈湘鹏, 周皓, 金涛, 王正位. 微观层面系统性金融风险指标的比较与适用性分析——基于中国金融系统的研究[J]. 金融研究, 2019, 467(5): 17-36.
[2] 江春, 司登奎, 李小林. 基于拓展泰勒规则汇率模型的人民币汇率动态决定:理论分析与经验研究[J]. 金融研究, 2018, 452(2): 82-99.
[3] 张程, 范立夫. 大宗商品价格影响与货币政策权衡——基于石油的金融属性视角[J]. 金融研究, 2017, 441(3): 72-85.
[4] 俞剑, 郑文平, 程冬. 油价不确定性与企业投资[J]. 金融研究, 2016, 438(12): 32-47.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1