Please wait a minute...
金融研究  2025, Vol. 546 Issue (12): 151-168    
  本期目录 | 过刊浏览 | 高级检索 |
推断预期视角下中国股票市场分析师的过度反应研究
张一帆, 林建浩, 林伊漩
中山大学岭南学院,广东广州 510275
Overreaction of Analysts in the Chinese Stock Market from the Perspective of Diagnostic Expectations
ZHANG Yifan, LIN Jianhao, LIN Yixuan
Lingnan College, Sun Yat-sen University
下载:  PDF (842KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 推断预期是理解股票市场参与主体预期形成和过度反应的新理论视角,如何将这一理论与实践相结合是研究面临的主要问题。本文聚焦推断预期理论与股票分析师的过度反应,通过Block-Bootstrap和遍历矩条件优化现有估计方法,利用分析师数据估计推断预期的关键参数。研究发现,中国股票分析师存在显著的推断预期偏差,并且这种偏差对于流动性较差、杠杠率较高、机构持股比例较低的高风险企业更为显著。本文进一步发现,这种偏差与资产价格存在短期正相关与长期负相关,与市场情绪存在先上升后下降的倒U形关系。本文为理解中国股票分析师过度反应提供了新的视角,也拓展了推断预期与现实数据融合的分析工具与实践场景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张一帆
林建浩
林伊漩
关键词:  过度反应  推断预期  分析师预测    
Summary:  The Chinese stock market, characterized by rapid expansion, high retail investor participation, significant information asymmetry, and substantial volatility, frequently exhibits overreaction phenomena. Financial analysts, as key information intermediaries, play a crucial role in shaping market-wide expectations. This study investigates their overreaction through the novel diagnostic expectations theory. Rooted in the psychological concept of “representativeness,” this theory argues that individuals, when interpreting new information, overweight outcomes that are more representative of a given state. This cognitive shortcut leads to systematic prediction errors and overreaction, a behavior particularly relevant in China's uncertain and competitive market environment, where analysts may be encouraged to rely on such heuristics. This research, therefore, aims to quantify this bias and explore its implications for asset prices and market sentiment.
To enhance the reliability of our estimation, this paper refines the existing Simulated Method of Moments (SMM) methodology for quantifying the degree to which an analyst's judgment is distorted by the representativeness heuristic. Our primary methodological contributions are twofold. First, we introduce a Block-Bootstrap procedure to construct confidence intervals for the estimated parameters. This non-parametric approach addresses the potential non-normal distribution of parameter estimates and strengthens the statistical robustness of our findings. Second, to mitigate the subjective bias associated with specific moment condition selection for the estimation, we systematically traverse all possible combinations of valid moment conditions. This ensures that our results are not contingent on an arbitrary choice of model specifications, thereby providing a more robust and statistically sound estimate of the diagnostic expectations parameter in China.
Our research yields several key findings. We find strong evidence of overreaction among Chinese stock market analysts. The baseline estimation for the key parameter measuring this bias is not only statistically significant but also more than double the value estimated for the U.S. market, indicating a substantially stronger influence of this cognitive bias in China. The bias is more pronounced for firms with higher risk profiles, specifically those with poor liquidity, high financial leverage, and low institutional ownership. After decomposing forecasts into a rational component and a bias component, we find this bias has significant economic consequences. It drives a time-varying relationship with future stock returns, where a long-term negative correlation is consistent with the classic overreaction hypothesis and subsequent price reversal. Moreover, the bias exhibits an inverted U-shaped relationship with future market sentiment, with the effect being more pronounced and rapid in online media compared to traditional print media.
This study makes several contributions to the literature. First, it enhances the estimation of the diagnostic expectations model by incorporating Block-Bootstrap and a systematic traversal of moment conditions, improving the robustness and reliability of the empirical results. Second, it provides strong evidence for the applicability of diagnostic expectations theory in the Chinese context, a crucial emerging market, quantifying a key behavioral bias that drives analyst behavior. Most importantly, by decomposing forecasts and linking the bias component to subsequent market outcomes, it offers a novel channel for understanding the relationship between analyst cognitive biases, long-term stock return predictability, and the dynamics of market sentiment. These findings provide valuable insights into understanding overreaction for investors seeking investment strategies and for regulators concerned with market stability.
Keywords:  Overreaction    Diagnostic Expectations    Analyst Forecasts
JEL分类号:  D84   G12   G14  
基金资助: * 本文研究得到国家社会科学基金重大项目(24ZDA042)、国家自然科学基金面上项目(72303256,72273156)、广东省自然科学基金面上项目(2024A1515011255)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  林建浩,经济学博士,教授,中山大学岭南学院,E-mail:linjh3@mail.sysu.edu.cn.   
作者简介:  张一帆,经济学博士,副教授,中山大学岭南学院,E-mail:zhangyf278@mail.sysu.edu.cn.林伊漩,硕士研究生,中山大学岭南学院,E-mail:linyx89@mail2.sysu.edu.cn.
引用本文:    
张一帆, 林建浩, 林伊漩. 推断预期视角下中国股票市场分析师的过度反应研究[J]. 金融研究, 2025, 546(12): 151-168.
ZHANG Yifan, LIN Jianhao, LIN Yixuan. Overreaction of Analysts in the Chinese Stock Market from the Perspective of Diagnostic Expectations. Journal of Financial Research, 2025, 546(12): 151-168.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V546/I12/151
[1] 褚剑、秦璇和方军雄,2019,《中国式融资融券制度安排与分析师盈利预测乐观偏差》,《管理世界》第1期,第151~166+228页。
[2] 方军雄,2007,《我国上市公司信息披露透明度与证券分析师预测》,《金融研究》第6期,第136~148页。
[3] 何贵华、崔宸瑜、高皓和屈源育,2021,《名义价格幻觉——基于证券分析师目标价格预测的经验证据》,《金融研究》第6期,第189~206页。
[4] 郦金梁、何诚颖、廖旦和何牧原,2018,《舆论影响力、有限关注与过度反应》,《经济研究》第3期,第126~141页。
[5] 李志生、杜爽和林秉旋,2015,《卖空交易与股票价格稳定性——来自中国融资融券市场的自然实验》,《金融研究》第6期,第173~188页。
[6] 刘少波、杨俊宇和张友泽,2021,《信息透明度、分析师关注与实体企业金融化》,《南方金融》第12期,第47~58页。
[7] 陆蓉、李金龙和陈实,2022,《中国投资者的股票出售行为画像——处置效应研究新进展》,《管理世界》第3期,第59~78页。
[8] 马黎珺、吴雅倩、伊志宏和刘嫣然,2022,《分析师报告的逻辑性特征研究:问题、成因与经济后果》,《管理世界》第8期,第217~234页。
[9] 欧阳才越,王治立,赵健梅和赵巾慧,2024,《中小投资者保护与分析师盈余预测质量——基于投服中心持股试点的经验证据》,《金融监管研究》第10期,第77~94页。
[10] 邵新建、何明燕、江萍、薛熠和廖静池,2015,《媒体公关、投资者情绪与证券发行定价》,《金融研究》第9期,第190~206页。
[11] 伍燕然、潘可、胡松明和江婕,2012,《行业分析师盈利预测偏差的新解释》,《经济研究》第4期,第149~160页。
[12] 许泳昊、徐鑫和朱菲菲,2022,《中国A股市场的“大单异象”研究》,《管理世界》第7期,第120~136页。
[13] 张光利、薛慧丽和高皓,2021,《企业IPO价值审核与股票市场表现》,《经济研究》第10期,第155~171页。
[14] 张军、邓燕飞、张丽娜、石烁和唐东波,2024,《模型化预期——原理性回顾与本土化思考》,《世界经济文汇》第2期,第55~69页。
[15] 张晓燕和葛慧敏,2022,《新闻语调与中国股票市场收益率》,《经济管理学刊》第1期,第55~80页。
[16] 张宗新和吴钊颖,2021,《媒体情绪传染与分析师乐观偏差——基于机器学习文本分析方法的经验证据》,《管理世界》第1期,第170~185+11+20~22页。
[17] 朱菲菲、李惠璇、徐建国和李宏泰,2019,《短期羊群行为的影响因素与价格效应——基于高频数据的实证检验》,《金融研究》第7期,第191~206页。
[18] Baley, I. and L. Veldkamp, 2023, “Bayesian Learning”, Handbook of Economic Expectations, pp.717~748.
[19] Bordalo, P., K. Coffman, N. Gennaioli and A. Shleifer, 2016, “Stereotypes”, Quarterly Journal of Economics, 131(4), pp.1753~1794.
[20] Bordalo, P., N. Gennaioli and A. Shleifer, 2018, “Diagnostic Expectations and Credit Cycles”, Journal of Finance, 73(1), pp.199~227.
[21] Bordalo, P., N. Gennaioli, R. La Porta and A. Shleifer, 2019, “Diagnostic Expectations and Stock Returns”, Journal of Finance, 74(6), pp.2839~2874.
[22] Cagan, P., 1956, “The Monetary Dynamics of Hyperinflation”, in Studies in the Quantity Theory of Money, M. Friedman, ed, Chicago: University of Chicago Press, pp.25~117.
[23] Coibion, O. and Y. Gorodnichenko, 2015, “Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts”, American Economic Review, 105(8), pp.2644~2678.
[24] Cragg, J. G. and B. G. Malkiel, 1968, “The Consensus and Accuracy of Some Predictions of the Growth of Corporate Earnings”, Journal of Finance, 23(1), pp.67~84.
[25] Crawford, V. P., M. A. Costa-Gomes and N. Iriberri, 2013, “Structural Models of Nonequilibrium Strategic Thinking: Theory, Evidence, and Applications”, Journal of Economic Literature, 51(1), pp.5~62.
[26] De Silva, T. and D. Thesmar, 2024, “Noise in Expectations: Evidence from Analyst Forecasts”, Review of Financial Studies, 37(5), pp.1494~1537.
[27] De Bondt, W. F. M. and R. H. Thaler, 1990, “Do Security Analysts Overreact?”, American Economic Review, 80(2), pp.52~57.
[28] Gennaioli, N. and A. Shleifer, 2010, “What Comes to Mind”, Quarterly Journal of Economics, 125(4), pp.1399~1433.
[29] Hirshleifer, D., B. Lourie, T. G. Ruchti et al., 2021, “First Impression Bias: Evidence from Analyst Forecasts”, Review of Finance, 25(2), pp.325~364.
[30] Ilut, C. L. and M. Schneider, 2022, “Modeling Uncertainty as Ambiguity: A Review”, NBER Working Paper Series, 29915, pp.1~42.
[31] Jones, C. M., D. Shi and X. Zhang, 2025, “Retail Trading and Return Predictability in China”, Journal of Financial and Quantitative Analysis, 60(1), pp.68~104.
[32] Kahneman, D. and A. Tversky, 1972, “Subjective Probability: A Judgment of Representativeness”, Cognitive Psychology, 3(3), pp.430~454.
[33] La Porta, R., 1996, “Expectations and the Cross-Section of Stock Returns”, Journal of Finance, 51(5), pp.1715~1742.
[34] Liu, J., R. F. Stambaugh and Y. Yuan, 2019, “Size and Value in China”, Journal of Financial Economics, 134(1), pp.48~69.
[35] Metzler, L. A., 1941, “The Nature and Stability of Inventory Cycles”, Review of Economics and Statistics, 23(3), pp.113~129.
[36] Muth, J. F., 1961, “Rational Expectations and the Theory of Price Movements”, Econometrica, 29(3), pp.315~337.
[37] Shiller, R. J., 2017, “Narrative Economics”, American Economic Review, 107(4), pp.967~1004.
[38] Tversky, A. and D. Kahneman, 1983, “Extensional versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment”, Psychological Review, 90(4), pp.293~315.
[1] 郑登津, 史嘉铭, 陈菁. 政府财会监督与分析师预测质量——基于财政部会计信息质量随机检查的证据[J]. 金融研究, 2025, 545(11): 115-132.
[2] 闫昱, 童彦, 哈斯木其尔, 金桩. 利率变动、交易行为与金融稳定——一个融合异质信念的异质代理人连续时间DSGE模型[J]. 金融研究, 2024, 534(12): 20-39.
[3] 林晚发, 赵仲匡, 刘颖斐, 宋敏. 债券市场的评级信息能改善股票市场信息环境吗? ——来自分析师预测的证据[J]. 金融研究, 2020, 478(4): 166-185.
[4] 肖欣荣, 马梦璇. 信息共享还是利益冲突?——基于买方单独调研与买卖双方联合调研的实证检验[J]. 金融研究, 2019, 470(8): 171-188.
[5] 游家兴, 周瑜婷, 肖珉. 凯恩斯选美竞赛与分析师预测偏差行为——基于高阶预期的研究视角[J]. 金融研究, 2017, 445(7): 192-206.
[6] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191-206.
[7] 王雄元, 彭旋. 稳定客户提高了分析师对企业盈余预测的准确性吗?[J]. 金融研究, 2016, 431(5): 156-172.
[1] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[2] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
[3] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[4] 高然, 龚六堂. 土地财政、房地产需求冲击与经济波动[J]. 金融研究, 2017, 442(4): 32 -45 .
[5] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
[6] 罗进辉, 向元高, 金思静. 中国资本市场低价股的溢价之谜[J]. 金融研究, 2017, 439(1): 191 -206 .
[7] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[8] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[9] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[10] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115 -129 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1