Please wait a minute...
金融研究  2025, Vol. 546 Issue (12): 133-150    
  本期目录 | 过刊浏览 | 高级检索 |
算法交易的市场影响:稳定与信息效率的双重视角
岳崴, 屈建文, 李子潇, 刘悦
湖南大学金融与统计学院,湖南长沙 410006
The Market Impact of Algorithmic Trading: Dual Perspectives of Stability and Information Efficiency
YUE Wei, QU Jianwen, LI Zixiao, LIU Yue
College of Finance and Statistics, Hunan University
下载:  PDF (560KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文利用2015-2023年我国A股市场的高频交易数据和订单簿数据,构建算法交易强度指标,探讨了算法交易对股票市场稳定与信息效率的双重影响。研究发现,算法交易改善了市场流动性并抑制了价格波动,提升了市场稳定;然而,算法交易通过挤出知情交易者和卖空交易者,延缓了市场对新信息的吸收过程,降低了信息效率。上述双重影响在非国有、中小规模及信息披露质量较低的上市公司中更为显著。此外,算法交易对流动性共性风险影响有限;在市场异动期间,算法交易通过更强的流动性支持和波动抑制增强了市场稳定,但与此同时通过降低价格信息含量和信息反应速度导致了更显著的市场信息效率下降;算法交易显示出对股市“好波动”与“坏波动”的非对称抑制效应。本文研究对强化算法交易透明度管理、构建算法交易市场稳定性监管框架和加强市场信息效率保护具有一定启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳崴
屈建文
李子潇
刘悦
关键词:  算法交易  市场稳定  信息效率  流动性风险  价格波动    
Summary:  Algorithmic trading refers to trading technology that uses computer algorithms to automate trading decisions, submit orders, and manage order execution. It includes portfolio selection, trading strategies, execution strategies, and other elements, and has become a significant trading method in the securities market. Currently, program trading in the securities market often adopts algorithmic trading approaches.
In April 2024, the State Council issued the “Guidelines on Strengthening Regulation, Forestalling Risks and Promoting the High-Quality Development of the Capital Market”, which explicitly called for the formulation of regulations on program trading supervision and strengthened oversight of high-frequency algorithmic trading. In May, the China Securities Regulatory Commission (CSRC) introduced the “Provisions on the Administration of Program Trading in the Securities Market (Trial)” to provide institutional foundation for algorithmic trading regulation. In line with the political and people-centered nature of financial work and the philosophy of serving the people through finance, further efforts are needed to protect the legitimate rights and interests of the vast number of small and medium-sized retail investors in China's stock market. Improving the regulatory framework for algorithmic trading requires comprehensive theoretical and empirical research on its market impact and mechanisms, tailored to the realities of China's capital market.
This paper uses high-frequency trading data and order book data from China's A-share market between 2015 and 2023 to develop an algorithmic trading intensity indicator. It empirically examines the dual impact of algorithmic trading on stock market stability and information efficiency. The main findings are as follows: First, algorithmic trading reduces bid-ask spreads in the stock market while also decreasing price ranges and realized volatility, thereby enhancing market stability by improving market liquidity and suppressing market volatility. Second, algorithmic trading reduces the intensity of informed trading and short selling, thereby lowering market information efficiency by crowding out traditional informed traders and short sellers. Third, during periods of market turbulence, algorithmic trading enhances market stability through stronger liquidity support and suppression of price volatility; however, it simultaneously reduces the information content and speed of information reaction in the market, leading to a more significant decline in information efficiency. Fourth, algorithmic trading does not significantly impact the commonality risk of individual stock liquidity, indicating that it does not increase liquidity commonality risk. Fifth, algorithmic trading exhibits an asymmetric suppression effect on “good volatility” and “bad volatility” in the stock market. Specifically, compared to “good volatility” triggered by positive information, algorithmic trading shows a weaker stabilizing effect in response to “bad volatility” caused by negative information. Additionally, this paper analyzes the heterogeneous impact of algorithmic trading on market stability and information efficiency from perspectives such as company's ownership, size, and quality of information disclosure. The study finds that for non-state-owned listed companies, small and medium-sized listed companies, and listed companies with lower-quality information disclosure, the effect of algorithmic trading in enhancing market stability is accompanied by a more pronounced reduction in information efficiency.
The possible contributions of this paper are mainly in the following two aspects: (1) Previous studies have shown that algorithmic trading enhances market information efficiency in mature capital markets but exacerbates market volatility and, in extreme cases, leads to rapid depletion of market liquidity, thereby threatening market stability. This paper, however, reveals the dual impact of algorithmic trading on China's capital market, that is, enhancing market liquidity, reducing volatility, and thereby improving market stability, while simultaneously reducing market information efficiency. Thus, in terms of theoretical implications, the findings provide new empirical evidence on the market impact of algorithmic trading. In terms of practical implications, the empirical results offer a quantitative basis for improving algorithmic trading regulatory rules. (2) This paper enriches the academic discussion on the impact of securities trading models on capital markets. While existing literature has largely focused on the effects of listed company characteristics, institutional mechanisms, and market systems on capital markets, this study reveals the dual impact of algorithmic trading, an artificial intelligence-driven securities trading method, on both market stability and informational efficiency. These findings provide a new perspective for understanding the role of artificial intelligence technology in capital markets.
Based on the findings of this paper, the following policy recommendations are proposed to fully leverage the positive role of algorithmic trading in supporting market stability while optimizing the market information environment to mitigate its negative impact on information efficiency: First, regulatory authorities should strengthen the management of algorithmic trading transparency to enhance market comprehensibility and predictability of algorithmic trading behaviors. Second, given the significant differences in the impact of algorithmic trading on stability under different market conditions, policymakers need to establish a market stability regulatory framework specifically tailored to algorithmic trading. Third, since algorithmic trading may delay price convergence to intrinsic value, regulatory agencies should strengthen the protection and monitoring of market information efficiency.
Keywords:  Algorithmic Trading    Market Stability    Information Efficiency    Liquidity Risk    Price Volatility
JEL分类号:  G10   G12   G14  
基金资助: * 本文感谢国家自然科学基金青年项目(72103060)、教育部人文社会科学研究青年基金项目(21YJC790151)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  屈建文,博士研究生,湖南大学金融与统计学院,E-mail:qujianwen@hnu.edu.cn.   
作者简介:  岳 崴,经济学博士,副教授,湖南大学金融与统计学院,E-mail:yuewei@hnu.edu.cn.李子潇,硕士研究生,湖南大学金融与统计学院,E-mail:lizixiao@hnu.edu.cn.刘 悦,博士研究生,湖南大学金融与统计学院,E-mail:june@hnu.edu.cn.
引用本文:    
岳崴, 屈建文, 李子潇, 刘悦. 算法交易的市场影响:稳定与信息效率的双重视角[J]. 金融研究, 2025, 546(12): 133-150.
YUE Wei, QU Jianwen, LI Zixiao, LIU Yue. The Market Impact of Algorithmic Trading: Dual Perspectives of Stability and Information Efficiency. Journal of Financial Research, 2025, 546(12): 133-150.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V546/I12/133
[1] 陈国进、丁杰和赵向琴,2019a,《“好”的不确定性、“坏”的不确定性与股票市场定价——基于中国股市高频数据分析》,《金融研究》第7期,第174~190页。
[2] 陈国进、张润泽、谢沛霖和赵向琴,2019b,《知情交易、信息不确定性与股票风险溢价》,《管理科学学报》第4期,第53~74页。
[3] 陈海强和倪博,2024,《T+0量化交易与转融券市场化费率居高不下之谜——从交易制度套利论协同改革的必要性》,《管理世界》第6期,第60~76页。
[4] 陈海强、倪博、宋沐青和廖培森,2024,《信息披露的同伴效应促进了金融市场稳定——基于创业板注册制信息披露改革的实证研究》,《经济学(季刊)》第5期,第1672~1687页。
[5] 陈海强、赵潇洋和李东旭,2023,《股权质押渠道与金融市场稳定——基于股价崩盘风险的视角》,《管理科学学报》第6期,第81~95页。
[6] 李金甜和毛新述,2023,《资本市场制度型开放与流动性共性效应——兼论气候风险的影响》,《金融研究》第5期,第170~188页。
[7] 李松楠、刘玉珍和胡聪慧,2023,《价格笼子、流动性与价格发现效率——基于创业板注册制改革的证据》,《管理世界》第3期,第49~62页。
[8] 陆蓉、张瑞瑞和闵思凯,2025,《量化交易的市场价值效应——信息优势的作用》,《管理世界》第6期,第55~76+157+77~97页。
[9] 孙广宇、李志辉、杜阳和王近,2021,《市场操纵降低了中国股票市场的信息效率吗——来自沪市A股高频交易数据的经验证据》,《金融研究》第9期,第151~169页。
[10] 王良、秦隆皓、刘潇和陈婕,2018,《高频数据条件下基于ETF基金的股指期货套利研究》,《中国管理科学》第5期,第9~20页。
[11] 王宇超、李心丹和刘海飞,2014,《算法交易的市场影响研究》,《管理科学学报》第1期,第57~71页。
[12] 韦立坚、张大卫、骆兴国和张洋锋,2022,《股指期货市场的高频交易与价格发现》,《管理科学学报》第1期,第95~106页。
[13] 吴偎立和常峰源,2021,《ETF、股票流动性与流动性同步性》,《经济学(季刊)》第2期,第645~670页。
[14] 赵家悦、卢锐、柳建华和Jerry Cao,2024,《涨跌停制度变革、股票流动性与资本市场表现》,《金融研究》第3期,第113~131页。
[15] 张路、李金彩、袁振超和岳衡,2021,《管理者能力与资本市场稳定》,《金融研究》第9期,第188~206页。
[16] 张小日、孙芳芳和叶强,2024,《A股程序化交易与盈余公告前股价信息含量》,《计量经济学报》第6期,第1441~1466页。
[17] Aquilina, M., E. Budish and P. O’neill, 2022, “Quantifying the High-Frequency Trading ‘Arms Race’”, The Quarterly Journal of Economics, 137(1), pp.493~564.
[18] Baldauf, M. and J. Mollner, 2020, “High-Frequency Trading and Market Performance ”, The Journal of Finance, 75(3), pp.1495~1526.
[19] Boehmer, E., K. Fong and J. J. Wu, 2021, “Algorithmic Trading and Market Quality: International Evidence ”, Journal of Financial & Quantitative Analysis, 56(8), pp.2659~2688.
[20] Brogaard, J., A. Carrion, T. Moyaert, R. Riordan, A. Shkilko and K. Sokolov, 2018, “High-Frequency Trading and Extreme Price Movements ”, Journal of Financial Economics, 128(2), pp.253~265.
[21] Brogaard, J., T. Hendershott and R. Riordan, 2014, “High-Frequency Trading and Price Discovery”, The Review of Financial Studies, 27(8), pp.2267~2306.
[22] Carrion, A., 2013, “Very Fast Money: High-Frequency Trading on the NASDAQ”, Journal of Financial Markets, 16(4), pp.680~711.
[23] Cartea, A., R. Payne, J. Penalva, and M. Tapia, 2019, “Ultra-Fast Activity and Intraday Market Quality ”, Journal of Banking & Finance, 99, pp.157~181.
[24] Chakrabarty, B. and R. Pascual, 2023, “Stock Liquidity and Algorithmic Market Making During the COVID-19 Crisis”, Journal of Banking & Finance, 147, pp.106415.
[25] Chang, Y. K. and R. K. Chou, 2022, “Algorithmic Trading and Market Quality: Evidence from the Taiwan Index Futures Market”, Journal of Futures Markets, 42(10), pp.1837~1855.
[26] Chordia, T., R. Roll and A. Subrahmanyam, 2005, “Evidence on the Speed of Convergence to Market Efficiency”, Journal of Financial Economics, 76(2), pp.271~292.
[27] Easley, D., M. M. L. De Prado and M. O'Hara, 2011, “The Microstructure of the ‘Flash Crash’: Flow Toxicity, Liquidity Crashes, and the Probability of Informed Trading”, Journal of Portfolio Management, 37(2), pp.118~128.
[28] Hasbrouck, J. and G. Saar, 2013, “Low-Latency Trading”, Journal of Financial Markets, 16(4), pp.646~679.
[29] Hendershott, T., C. M. Jones and A. J. Menkveld, 2011, “Does Algorithmic Trading Improve Liquidity?”, The Journal of Finance, 66(1), pp.1~33.
[30] Jones, C. M., D. Shi, X. Zhang and X. Zhang., 2025, “Retail Trading and Return Predictability in China”, Journal of Financial & Quantitative Analysis, 60(1), pp.68~104.
[31] Leal, S. J. and M. Napoletano, 2019, “Market Stability vs. Market Resilience: Regulatory Policies Experiments in an Agent-Based Model with Low-and High-Frequency Trading”, Journal of Economic Behavior & Organization, 157, pp.15~41.
[32] Li, S., J. Wu, X. Zhang and X. Zhang, 2023, “Tracking Retail and Institutional Investors Activity in China”, PBCSF-NIFR Research Paper, SSRN: https://ssrn.com/abstract=4630162.
[33] Malceniece, L., K. Malcenieks and T. J. Putniņš, 2019, “High-Frequency Trading and Comovement in Financial Markets”, Journal of Financial Economics, 134(2), pp.381~399.
[34] Menkveld, A. J., 2013, “High-Frequency Trading and the New-Market Makers”, Journal of Financial Markets, 16(4), pp.712~740.
[35] Stephan, A., 2024, “The Effect of Algorithmic Trading on Management Guidance”, The Accounting Review, 99(6), pp.421~449.
[36] Thomas, W. B., Y. Wang and L. Zhang, 2024, “Algorithmic Trading and Forward‐Looking MD&A Disclosures”, Journal of Accounting Research, 62(4), pp.1533~1569.
[37] Weller, B. M., 2018, “Does Algorithmic Trading Reduce Information Acquisition?”, The Review of Financial Studies, 31(6), pp.2184~2226.
[38] Yuferova, D., 2024, “Algorithmic Trading and Market Efficiency Around the Introduction of the NYSE Hybrid Market”, Journal of Financial Markets, 69, pp.100909.
[1] 方意, 和文佳, 王琦. 非核心负债业务、流动性渠道和银行业系统性风险:理论模型与经验分析[J]. 金融研究, 2024, 525(3): 20-37.
[2] 赵家悦, 卢锐, 柳建华, Jerry Cao. 涨跌停制度变革、股票流动性与资本市场表现[J]. 金融研究, 2024, 525(3): 113-131.
[3] 孙广宇, 李志辉, 杜阳, 王近. 市场操纵降低了中国股票市场的信息效率吗——来自沪市A股高频交易数据的经验证据[J]. 金融研究, 2021, 495(9): 151-169.
[4] 张路, 李金彩, 袁振超, 岳衡. 管理者能力与资本市场稳定[J]. 金融研究, 2021, 495(9): 188-206.
[5] 刘向明, 邓翔欧, 藏波. 市场模式、政府模式与城商行流动性风险化解—一个三期博弈的分析框架[J]. 金融研究, 2020, 478(4): 131-146.
[6] 张宗新, 张秀秀. 引入国债期货合约能否发挥现货市场稳定效应?——基于中国金融周期的研究视角[J]. 金融研究, 2019, 468(6): 58-75.
[7] 雷文妮, 龚六堂. 房价波动与社会福利——基于内生化企业进入的研究[J]. 金融研究, 2016, 434(8): 51-67.
[8] 谭松涛, 阚铄, 崔小勇. 互联网沟通能够改善市场信息效率吗?——基于深交所“互动易”网络平台的研究[J]. 金融研究, 2016, 429(3): 174-188.
[1] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[2] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[3] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[4] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[5] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[6] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[7] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
[8] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[9] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[10] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1