Please wait a minute...
金融研究  2023, Vol. 513 Issue (3): 38-56    
  本期目录 | 过刊浏览 | 高级检索 |
债务风险传染的多重网络研究
杨子晖, 王姝黛, 李东承, 冷铁成
南方科技大学商学院,深圳 518055;
广东外语外贸大学金融学院,广州 510006;
中山大学岭南学院,广州 510275;
哈尔滨工业大学经济与管理学院,哈尔滨 150001
Research on the Multilayer Network of Debt Risk Contagion
YANG Zihui, WANG Shudai, LI Dongcheng, LENG Tiecheng
SUSTech Business School, Southern University of Science and Technology;
School of Finance, Guangdong University of Foreign Studies;
Lingnan College, Sun Yat-Sen University;
School of Management, Harbin Institute of Technology
下载:  PDF (2141KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 2020年以来,我国债券市场先后经历了AAA级债券违约、房企暴雷等风险事件。科学处置突发违约事件,对维护资本市场稳定与国家金融安全至关重要。在此背景下,本文使用债券信用利差构建债务风险传染的多重网络,并在综合考虑城投债与产业债,不同信用评级债券异质性的基础上,应用前沿的网络合成技术,考察债务风险的跨区域与跨行业传染。研究发现,我国中西部地区受制于较为薄弱的经济基础,在债券市场中具备较高的系统重要性。而人口密集、经济外向度较高的东部地区受突发公共卫生事件的影响较大,其在非线性产业债网络内的系统重要性出现上升。在产业债市场中,房地产部门已经成为最为重要的风险源。此外,本文的研究还表明,区域贸易是影响债务风险传染的重要因素,贸易关联主要通过产业债市场发挥作用。基于以上发现,本文对完善债务风险防范机制提出若干建议,从而为保证资本市场的平稳发展,发挥好金融服务实体经济的职能,提供政策参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨子晖
王姝黛
李东承
冷铁成
关键词:  债务风险传染  城投债  产业债  多重网络  网络合成技术    
Summary:  Since 2020, China's bond market has experienced unexpected defaults of AAA-rated bonds and defaults by real estate companies. This abnormal fluctuation in the bond market presents a huge threat to the stability of the financial system. In this context, the Report to the 20th National Congress of the Communist Party of China states that “we will reinforce the systems that safeguard financial stability, place all types of financial activities under regulation according to the law, and ensure no systemic risks arise.” Thus, preventing systemic shocks caused by default events is crucial to ensuring the development of the capital market and the macroeconomy.
We use the credit spreads of municipal investment bonds and enterprise bonds to construct multilayer networks of debt risk. We identify the source of turbulence in multilayer networks based on the leave-one-out method (Hué et al., 2019). Furthermore, considering the heterogeneity of the bond markets, we apply the latest network combination technology proposed by Bonaccolto et al. (2019) to integrate risk information in linear and nonlinear networks and examine the cross-regional and cross-industry contagion effects of debt risk. Finally, we provide empirical evidence for the trade channel of debt risk contagion.
We contribute to the research on the contagion effect of financial risk. First, the literature pays less attention to the debt-risk contagion of the Chinese corporate sector. However, as the debt scale of non-financial enterprises in China continues to rise, bond default has a significant negative impact on the stability of the financial market. This requires us to analyze the potential risk of municipal investment bonds and enterprise bonds. Second, bonds with different credit ratings and bonds from different issuers may have various risk characteristics, so analyzing debt risk in China based on multiple networks could be very valuable. This paper makes an innovative attempt to do so. Third, our work has strong policy implications. To the best of our knowledge, we are the first to show the path of debt risk transmission in China using network combination technology. This approach provides a practical scheme for the measurement and early warning of debt risk.
Our sample consists of municipal investment bonds in 25 provinces from January 1, 2017 to June 30, 2021, and enterprise bonds in 22 industries from January 1, 2017 to December 31, 2020. All of the data are from the Wind Database and the China Statistical Yearbook.
We find that China's central and western regions have higher systemic importance in the bond market than other regions because of the weak economic foundations. Nevertheless, the eastern regions, which are densely populated and highly export-oriented, have been significantly affected by the COVID-19 pandemic. As a consequence, the systemic importance of China's eastern provinces in the nonlinear enterprise bond network increased dramatically after 2020. Additionally, in the enterprise bond market, the real estate sector is an important source of risk. The recent default of AAA bonds is another important factor affecting market sentiment. Finally, we show that debt risk may be transmitted through regional trade relationships. Good economic fundamentals are the key to preventing debt risk contagion. These real economic factors mainly play a role in affecting the enterprise bond market.
Based on the findings mentioned above, we provide several suggestions for improving the debt default disposal mechanism and preventing debt risk contagion. First, for the municipal investment bond market, China should closely monitor the risk dynamics in its central and western regions. The regulatory authorities should guide local financing platforms to improve the efficiency of their capital use and the profitability of the platform. In addition, local financing platforms should improve their information disclosure mechanisms to maintain investor confidence. Second, for the enterprise bond market, China should pay close attention to the risk dynamics of the real estate and transportation industries and implement stricter rules for bond issuance in high-risk industries. It is also important to ensure the independence of credit rating agencies by developing an investor-payment model. Third, China should establish a regional debt-risk monitoring system based on interprovincial trade flows. When trading partners default, local governments should take measures to boost market sentiment, create a stable and efficient capital market, and contribute to the high-quality development of the real economy during the “14th Five-Year Plan” period.
Keywords:  Debt Risk Contagion    Municipal Investment Bonds    Enterprise Bond    Multilayer Network    Network Combination Technology
JEL分类号:  E44   G10  
基金资助: * 本文感谢2021年度国家社科基金重大项目“‘双循环’新格局下我国金融风险演化及防控措施研究”(项目批准号:21&ZD114)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  王姝黛,经济学博士,讲师,广东外语外贸大学金融学院,E-mail:wangshd6@163.com   
作者简介:  杨子晖,经济学博士,教授,南方科技大学商学院,E-mail:yangzh@sustech.edu.cn.
李东承,经济学博士,博士后,中山大学岭南学院,E-mail:lidch25@mail.sysu.edu.cn.
冷铁成,金融学博士,教授,哈尔滨工业大学经济与管理学院,E-mail:tcleng@hit.edu.cn.
引用本文:    
杨子晖, 王姝黛, 李东承, 冷铁成. 债务风险传染的多重网络研究[J]. 金融研究, 2023, 513(3): 38-56.
YANG Zihui, WANG Shudai, LI Dongcheng, LENG Tiecheng. Research on the Multilayer Network of Debt Risk Contagion. Journal of Financial Research, 2023, 513(3): 38-56.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V513/I3/38
[1] 陈海强、方颖和王方舟,2019,《融资融券制度对尾部系统风险的非对称影响——基于A股市场极值相关性的研究》,《管理科学学报》第5期,第99~109页。
[2] 郭晔、黄振和王蕴,2016,《未预期货币政策与企业债券信用利差——基于固浮利差分解的研究》,《金融研究》第6期,第67~80页。
[3] 梁琪和郝毅,2019,《地方政府债务置换与宏观经济风险缓释研究》,《经济研究》第4期,第18~32页。
[4] 刘晓星、段斌和谢福座,2011,《股票市场风险溢出效应研究:基于EVT-Copula-CoVaR模型的分析》,《世界经济》第11期,第145~159页。
[5] 李志生、苏诚、李好和孔东民,2018,《企业过度负债的地区同群效应》,《金融研究》第9期,第74~90页。
[6] 王姝黛和杨子晖,2022,《产业贸易中心性、贸易外向度与金融风险——兼论新发展格局下的金融风险防范机制》,《中国工业经济》第8期,第63~81页。
[7] 杨子晖和王姝黛,2021,《突发公共卫生事件下的全球股市系统性金融风险传染——来自新冠疫情的证据》,《经济研究》第8期,第22~38页。
[8] 钟宁桦、陈姗姗、马惠娴和王姝晶,2021,《地方融资平台债务风险的演化——基于对“隐性担保”预期的测度》,《中国工业经济》第4期,第5~23页。
[9] Agca, S., Babich, V., Birge, J. R., and Wu, J., 2021, “Credit Shock Propagation Along Supply Chains: Evidence from the CDS Market”, Management Science, 68(9): 6355~7064.
[10] Blommestein, H., Eijffinger, S., and Qian, A., 2016, “Regime-dependent Determinants of Euro Area Sovereign CDS Spreads”, Journal of Financial Stability, 22: 10~21.
[11] Bonaccolto, G., Caporin, M. and Panzica, R., 2019, “Estimation and Model-Based Combination of Causality Networks among Large US Banks and Insurance Companies”, Journal of Empirical Finance, 54(5): 1~21.
[12] Chang, J., Du, H., Lou, D., and Polk, C., 2022, “Ripples into Waves: Trade Networks, Economic Activity, and Asset Prices”, Journal of Financial Economics, 145: 217~238.
[13] Costello, A. M., 2020, “Credit Market Disruptions and Liquidity Spillover Effects in the Supply Chain”, Journal of Political Economy, 128(9): 3434~3468.
[14] Diks, C. and Panchenko, V., 2006, “A New Statistic and Practical Guidelines for Nonparametric Granger Causality Testing”, Journal of Economic Dynamics and Control, 30: 1647~1669.
[15] Gençay, R., Signori, D., Xue, Y., Yu, X., and Zhang, K., 2015, “Economic Links and Credit Spreads”, Journal of Banking & Finance, 55: 157~169.
[16] Hertzel, M. G., and Officer, M. S., 2012, “Industry Contagion in Loan Spreads”, Journal of Financial Economics, 103(3): 493~506.
[17] Hiemstra, C. and Jones, J. D., 1994, “Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation”, The Journal of Finance, 49(5): 1639~1664.
[18] Hué, S., Lucotte, Y., and Tokpavi, S., 2019, “Measuring Network Systemic Risk Contributions: A Leave-One-Out Approach”, Journal of Economic Dynamics and Control, 100: 86~114.
[19] Jannati, S., 2020, “Geographic Spillover of Dominant Firms' Shocks”, Journal of Banking & Finance, 118: 105844.
[1] 朱莹, 王健. 市场约束能够降低地方债风险溢价吗?——来自城投债市场的证据[J]. 金融研究, 2018, 456(6): 56-72.
[2] 沈红波, 华凌昊, 张金清. 城投债发行与地方融资平台主动债务置换——基于银行授信视角[J]. 金融研究, 2018, 462(12): 91-104.
[3] 罗荣华, 刘劲劲. 地方政府的隐性担保真的有效吗?——基于城投债发行定价的检验[J]. 金融研究, 2016, 430(4): 83-98.
[4] 钟辉勇, 钟宁桦, 朱小能. 城投债的担保可信吗?——来自债券评级和发行定价的证据[J]. 金融研究, 2016, 430(4): 66-82.
[5] 汪莉, 陈诗一. 政府隐性担保、债务违约与利率决定[J]. 金融研究, 2015, 423(9): 66-81.
[6] 钟辉勇, 陆铭. 财政转移支付如何影响了地方政府债务?[J]. 金融研究, 2015, 423(9): 1-16.
[1] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[2] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[3] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[4] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[5] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[6] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[7] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[8] 王丽艳, 马光荣. 帆随风动、人随财走?——财政转移支付对人口流动的影响[J]. 金融研究, 2017, 448(10): 18 -34 .
[9] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[10] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1