Please wait a minute...
金融研究  2025, Vol. 544 Issue (10): 21-39    
  本期目录 | 过刊浏览 | 高级检索 |
股价波动与最优双支柱政策调控
徐臻阳, 龚六堂, 董丰, 许志伟
清华大学经济管理学院,北京 100084;
武汉大学高级研究中心,武汉 430072;
北京大学数量经济与数理金融教育部重点实验室,北京 100871;
复旦大学经济学院,上海 200433
Stock Price Fluctuaions and Optimal Two-pillar Policy Regulations
XU Zhenyang, GONG Liutang, DONG Feng, XU Zhiwei
School of Economics and Management, Tsinghua University;
The Institute for Advanced Studies, Wuhan University;
Key Laboratory of Mathematical Economics and Quantitative Finance, Peking University;
School of Economics, Fudan University; Shanghai Institution of Internatinal Finance and Economics
下载:  PDF (1375KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文探究股价波动下货币政策与宏观审慎政策双支柱调控的最优路径。研究发现,最优双支柱政策需根据冲击来源动态调整:面对生产率提升等基本面利好,应采取宽松的顺周期政策促进经济增长;面对市场情绪异常变化引起的股价上行,则须采取紧缩的逆周期政策以抑制过度投资。这一策略突破了传统简单线性规则逆周期调控的局限,可更灵活地调控经济并增加社会福利。双支柱框架可通过宏观审慎政策调节风险、货币政策调节通胀进行分工协同,较单一货币政策更具优势,能显著提升社会福利。本研究对资产价格波动应对和风险管理具有政策启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐臻阳
龚六堂
董丰
许志伟
关键词:  股价波动  信贷约束  双支柱政策调控  拉姆齐最优政策    
Summary:  As China accelerates the construction of a modern central banking system and emphasizes the bottom line of preventing systemic financial risks, stock price fluctuation have emerged as one of the core challenges to macroeconomic stability. To address such risks, China is actively constructing a “two-pillar” regulatory framework that coordinates monetary policy with macroprudential policy. However, a fundamental question demands an urgent answer: In an economic environment with stock price fluctuation, how should the “two-pillar” policies optimally respond to economic shocks from different sources? Traditional research mostly relies on fixed linear policy rules, often leading to generalized conclusions of “leaning against the wind”. Yet, these conclusions diverge significantly from the complex, discretionary practices of real-world policymakers.
To bridge the gap between theoretical models and policy practices, the core methodological innovation of this paper lies in employing the Ramsey optimal policy framework. Unlike the traditional approach of optimizing parameters for “optimal simple rules”, the Ramsey method takes the equilibrium equations of the entire economy as constraints and solves directly for the policy path that maximizes social welfare. The resulting optimal policy response functions are fully flexible and nonlinear, unconstrained by any preset structure, thereby revealing the truly optimal policy choices under different economic states and providing a robust theoretical foundation for “going beyond the Taylor rule”.
We construct a dynamic stochastic general equilibrium (DSGE) model that incorporates equity market and two-pillar policy tools. Stock prices can generate self-fulfilling fluctuations through collateral channels. Through parameter calibration and Bayesian estimation with the characteristics of the Chinese economy, we obtain four main findings.
Firstly, the choice of optimal two-pillar policies is not static but highly dependent on the nature of economic shocks. We overturn the conventional “leaning against the wind” paradigm and point out that when the economy faces positive fundamental productivity shocks, the optimal policy is a “tailwind” approach of “dual easing”, involving simultaneous interest rate cuts and relaxation of leverage ratios to encourage investment and fully seize growth opportunities. Conversely, when the economy faces positive sentiment shocks originating from non-fundamentals, the optimal policy is a “headwind” approach of “dual tightening”, raising rates and resolutely curbing excessive investment and protecting the real economy from irrational exuberance.
Secondly, compared to a single monetary policy, the two-pillar framework can significantly enhance social welfare. Its advantage lies in achieving an effective division of tasks among policy tools: macroprudential policy primarily regulates investment levels and maintains financial stability, while monetary policy can focus more on stabilizing inflation. This coordination breaks the difficult trade-off between “stabilizing growth” and “mitigating risks” faced by a single policy, enabling the economy to operate closer to the socially optimal state when facing shocks.
Thirdly, through comparative analysis, we find that the main flaw of optimal simple rules lies in their one-size-fits-all “leaning against the wind” approach, which erroneously suppresses investment under productivity shocks, resulting in welfare losses. To address this, we innovatively propose a “dual simple rules” scheme that is both optimal and operational, suggesting that policymakers switch between different simple rules under “productivity-dominated” and “non-productivity-dominated” modes based on the current economic environment, serving as a practical guide for approximately achieving Ramsey-optimal policies.
Lastly, in an extended model that more closely resembles Chinese reality by incorporating a large number of non-bankable firms, we find that rising stock prices in credit-accessible firms can generate positive “spillover effects”, thereby amplifying total investment. This mechanism necessitates that optimal two-pillar policies exercise greater caution during pro-cyclical easing and adopt more forceful measures during counter-cyclical tightening.
The research in this paper holds significant theoretical and practical value for the construction of China's modern central banking system. We not only provide a clear roadmap for the discretionary coordination under the two-pillar policies but also reveal the complex, dual role of equity bubbles in the economy. They are both sources of risk and potential tools for alleviating financial frictions. Our conclusions support the view that policymakers should construct a decision-making framework that goes beyond traditional rules and relies on in-depth macroeconomic analysis, harnessing rather than suppressing the energy of equity market prosperity through precise monitoring, expectation guidance, and differentiated regulation to serve high-quality economic development. Meanwhile, the “shock-dependent” policy paradigm proposed in this paper also holds profound implications for understanding and addressing asset price fluctuations in other key sectors like real estate.
Keywords:  Stock Price Fluctuations    Credit Constraints    Two-pillar Policy Regulations    Optimal Ramsey Policy
JEL分类号:  E44   E58   G12  
基金资助: *本文感谢匿名审稿人的宝贵意见。董丰感谢北京市社科基金青年学术带头人项目(24DTR020),徐臻阳感谢自科面上项目(72173009),许志伟感谢教育部哲学社科研究重大专项项目(2023JZDZ021)和自科面上项目(72473029),文责自负。
通讯作者:  董 丰,经济学博士,副教授,清华大学经济管理学院,E-mail:dongfeng@sem.tsinghua.edu.cn.   
作者简介:  徐臻阳,博士研究生,清华大学经济管理学院,E-mail:xu-zy22@mails.tsinghua.edu.cn.
龚六堂,理学博士,教授,武汉大学高级研究中心,北京大学数量经济与数理金融教育部重点实验室,E-mail:ltgong@gsm.pku.edu.cn.
许志伟,经济学博士,教授,复旦大学经济学院、上海国际金融与经济研究院,E-mail:zhiwei_xu@fudan.edu.cn.
引用本文:    
徐臻阳, 龚六堂, 董丰, 许志伟. 股价波动与最优双支柱政策调控[J]. 金融研究, 2025, 544(10): 21-39.
XU Zhenyang, GONG Liutang, DONG Feng, XU Zhiwei. Stock Price Fluctuaions and Optimal Two-pillar Policy Regulations. Journal of Financial Research, 2025, 544(10): 21-39.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V544/I10/21
[1]陈彦斌和刘哲希,2017,《推动资产价格上涨能够“稳增长”吗?——基于含有市场预期内生变化的DSGE模型》,《经济研究》第7期,第49~64页。
[2]陈彦斌、刘哲希和陈伟泽,2018,《经济增速放缓下的资产泡沫研究——基于含有高债务特征的动态一般均衡模型》,《经济研究》第10期,第16~32页。
[3]董丰、周基航和贾彦东,2023a,《银行资产负债表、金融系统性风险与双支柱调控框架》,《经济研究》第8期,第62~82页。
[4]董丰、周基航和贾彦东,2023b,《资产泡沫与最优货币政策》,《金融研究》第6期,第1~19页。
[5]董丰,2025,《资产泡沫与双支柱调控框架》,清华大学出版社,2025年1月。
[6]方意,2016,《系统性风险的传染渠道与度量研究:兼论宏观审慎政策实施》,《管理世界》第8期,第32~57+187页。
[7]黄益平、曹裕静、陶坤玉和余昌华,2019,《货币政策与宏观审慎政策共同支持宏观经济稳定》,《金融研究》第12期,第70~91页。
[8]陆静和喻浩,2023,《产业政策对股票特质波动率的影响及机制研究》,《中国管理科学》第1期,第21~36页。
[9]马骏和何晓贝,2019,《货币政策与宏观审慎政策的协调》,《金融研究》第12期,第58~69页。
[10]马勇和付莉,2020,《“双支柱”调控、政策协调搭配与宏观稳定效应》,《金融研究》第8期,第1~17页。
[11]马勇和姚驰,2021,《双支柱下的货币政策与宏观审慎政策效应——基于银行/风险承担的视角》,《管理世界》第6期,第51~69+3页。
[12]杨子晖,2020,《金融市场与宏观经济的风险传染关系——基于混合频率的实证研究》,《中国社会科学》第12期,第160~180+204页。
[13]张斌和熊婉婷,2019,《经济结构转型与“双支柱”调控框架》,《金融研究》第12期,第92~105页。
[14]赵扶扬,2022,《地价高估、公共投资与资源错配》,《经济研究》第3期,第155~172页。
[15]Barwick, P. J., M. Kalouptsidi and N.B. Zahur, 2025, “Industrial Policy Implementation: Empirical Evidence from China's Shipbuilding Industry”, The Review of Economic Studies, online.
[16]Chang C., K. Chen, D. Waggoner and T. Zha, 2015, “Trends and Cycles in China's Macroeconomy”, NBER Macroeconomics Annual, 30, pp.1~84.
[17]Chang, C., Z. Liu, M. M. Spiegel and J. Zhang, 2019, “Reserve Requirements and Optimal Chinese Stabilization Policy”, Journal of Monetary Economics, 103, pp.33~51.
[18]Fornaro, L.and M. Wolf, 2023, “The Scars of Supply Shocks: Implications for Monetary Policy”, Journal of Monetary Economics, 140, pp. S18~S36.
[19]Galí, J., 2021, “Monetary Policy and Bubbles in a New Keynesian Model with Overlapping Generations”, American Economic Journal: Macroeconomics, 13(2), pp.121~167.
[20]Liu, X. S., W. L. Megginson and J. Xia, 2022, “Industrial Policy and Asset Prices: Evidence from the Made in China 2025 Policy”, Journal of Banking & Finance, 142,p.106554.
[21]Martin, A., C. Mendicino and A. Van Der Ghote, 2021, “On the Interaction between Monetary and Macroprudential Policies”, ECB Working Paper No. 2527.
[22]Miao, J.and P. Wang, 2018, “Asset Bubbles and Credit Constraints”, American Economic Review, 108(9), pp.2590~2628.
[23]Miao, J., P. Wang and Z. Xu, 2015a, “A Bayesian Dynamic Stochastic General Equilibrium Model of Stock Market Bubbles and Business Cycles”, Quantitative Economics, 6(3), pp.599~635.
[24]Miao, J., P. Wang and J. Zhou, 2015b, “Asset Bubbles, Collateral, and Policy Analysis”, Journal of Monetary Economics, 76, pp. S57~S70.
[25]Mishkin, F. S., 2011, “Monetary Policy Strategy: Lessons from the Crisis”, NBER Working Paper Series, 16755.
[26]Richter, B., M. Schularick and I. Shim, 2018, “The Macroeconomic Effects of Macroprudential Policy”, BIS Working Paper, No. 740.
[27]Tirole, J., 1985, “Asset Bubbles and Overlapping Generations”, Econometrica, pp.1499~1528.
[28]Wang, P. and Y. Wen,2012, “Speculative Bubbles and Financial Crises”, American Economic Journal: Macroeconomics, 4(3), pp.184~221.
[1] 张博, 张晓帆, 蔡子阳. 金融科技、金融普惠与非法集资风险[J]. 金融研究, 2025, 535(1): 39-57.
[2] 许家云, 方森辉, 毛其淋. 僵尸企业、信贷约束与中国出口升级[J]. 金融研究, 2023, 516(6): 113-131.
[3] 田鸽, 黄海, 张勋. 数字金融与创业高质量发展:来自中国的证据[J]. 金融研究, 2023, 513(3): 74-92.
[4] 王亚柯, 刘东亚. 信贷约束与家庭金融市场参与[J]. 金融研究, 2023, 512(2): 171-188.
[5] 路晓蒙, 吴雨. 转入土地、农户农业信贷需求与信贷约束——基于中国家庭金融调查(CHFS)数据的分析[J]. 金融研究, 2021, 491(5): 40-58.
[6] 陈金至, 温兴春, 宋鹭. 收入差距、信贷约束与房价变动[J]. 金融研究, 2021, 497(11): 79-96.
[7] 尹志超, 张号栋. 金融可及性、互联网金融和家庭信贷约束——基于CHFS数据的实证研究[J]. 金融研究, 2018, 461(11): 188-206.
[8] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178-192.
[1] 江春, 孙福伟, 刘赛红. 全球价值链位置如何影响出口价格汇率传递[J]. 金融研究, 2025, 543(9): 39 -57 .
[2] 徐细雄, 占恒, 李万利. 卖空机制、双重治理与公司违规 ——基于市场化治理视角的实证检验[J]. 金融研究, 2021, 496(10): 190 -206 .
[3] 方意, 陈姿羽, 贾妍妍. 实体经济与金融市场的风险监测与调控[J]. 金融研究, 2025, 541(7): 1 -20 .
[4] 潘煜, 徐嫄, 徐铭梽, 马弘. 出口放缓对劳动力市场和家庭行为的影响[J]. 金融研究, 2025, 543(9): 58 -76 .
[5] 张梦婷, 司登奎, 石岿然, 王桂虎. 收入不稳定冲击的经济波动效应与政策协同调控[J]. 金融研究, 2025, 543(9): 1 -19 .
[6] 尚玉皇, 刘华, 申峰. 预期的博弈:央行沟通与国债收益率曲线[J]. 金融研究, 2025, 543(9): 20 -38 .
[7] 姜可心, 谭小芬, 朱菲菲. 资产价格与银行信贷配置[J]. 金融研究, 2025, 544(10): 40 -57 .
[8] 纪敏, 邱丽萍, 杨刚, 刘俊杰, 高洁. 通胀预期如何影响债券信用利差?[J]. 金融研究, 2025, 544(10): 1 -20 .
[9] 孙鲲鹏, 李新阳, 肖星. 就业政策如何影响微观企业用工行为?——来自互联网招聘大数据的证据[J]. 金融研究, 2025, 544(10): 133 -150 .
[10] 彭方平, 廖敬贤, 李晋阳. 银行业竞争与企业战略选择:理论与证据[J]. 金融研究, 2025, 544(10): 58 -76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1