Please wait a minute...
金融研究  2025, Vol. 544 Issue (10): 1-20    
  本期目录 | 过刊浏览 | 高级检索 |
通胀预期如何影响债券信用利差?
纪敏, 邱丽萍, 杨刚, 刘俊杰, 高洁
中国人民银行研究局(参事室),北京 100800;
上海财经大学金融学院,上海 200433;
中国民生银行金融市场研究中心,北京 100031;
中国民生银行宏观研究中心,北京 100031
How Do Inflation Expectations Influence Bond Credit Spreads?
JI Min, QIU Liping, YANG Gang, LIU Junjie, GAO Jie
Research Bureau, People's Bank of China;
School of Finance, Shanghai University of Finance and Economics;
Financial Market Research Center, China Minsheng Bank
下载:  PDF (859KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通胀预期作为货币政策预期管理的核心要素,对市场主体行为和债券市场定价具有显著影响。本文基于2010—2022年专家预测与A股上市公司信用债交易数据,实证检验了通胀预期对企业债券信用利差的影响。研究发现,我国通胀预期与信用利差呈现显著的“U”形关系,拐点为1.99%,即接近2%的通胀目标时利差最低。从机制来看,通胀预期通过违约风险溢价(反映企业偿债能力)和超额风险溢价(表征系统性宏观风险)双重渠道影响信用利差。分析表明,通胀预期对信用利差的影响在非国有企业、低杠杆企业和低评级债券中尤为突出。此外,适度的通胀预期有利于企业保持经营灵活性和降低企业融资成本;未预期的货币政策冲击能够显著影响通胀预期,并对债券价格波动产生影响。本文的研究为有效管理通胀预期、降低企业实际融资成本提供了决策依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪敏
邱丽萍
杨刚
刘俊杰
高洁
关键词:  通胀预期  债券信用利差  违约风险溢价  超额风险溢价  预期管理    
Summary:  Inflation expectations, as an integral component of expectation management, exert a significant influence on the pricing of financial assets and the corporate financing environment. While existing studies have made preliminary attempts to explore the relationship between inflation expectations and corporate bond credit spreads, their conclusions remain notably divergent. Most studies focus predominantly on firm-specific default risks, neglecting systemic macroeconomic factors, thus failing to comprehensively depict the full transmission pathways through which inflation expectations affect credit spreads. In fact, as a forward-looking indicator reflecting market participants' views on future price trends, inflation expectations not only directly affect the pricing level and return structure of financial assets but also influence credit spreads by altering investors' risk preferences and required risk premiums.
This study employs expert inflation forecast data from Securities Market Weekly (2010-2022) as the core explanatory variable, combined with secondary-market transaction data and primary-market issuance data of A-share listed companies' credit bonds, to systematically examine the relationship between inflation expectations and corporate bond credit spreads, as well as the underlying mechanisms. The paper develops a dual-channel transmission framework: (1) the Default Risk Premium (DRP) channel, reflecting investors' required compensation for the probability and potential loss of default; and (2) the Excess Risk Premium (ERP) channel, measuring the additional return investors require for bearing systemic macroeconomic risks.
The empirical findings reveal a pronounced nonlinear U-shaped relationship between China's inflation expectations and corporate bond credit spreads: At a moderate level of inflation expectations, identified at 1.99%, which is close to the 2% inflation target adopted by most central banks, credit spreads reach their minimum, implying lower corporate financing costs. Deviations from this threshold in either direction significantly widen credit spreads. This result remains robust across various model specifications, alternative variable definitions, frequency adjustments, and samples excluding the pandemic period, and is particularly pronounced among non-state-owned enterprises, low-leverage firms, and low-rating bonds. Mechanism analysis shows that inflation expectations affect credit spreads through two distinct channels: First, via the DRP dimension, moderate inflation facilitates “debt deflation” effects, alleviating firms' real debt burdens and reducing default risk. However, when inflation expectations rise excessively, macroeconomic uncertainty increases, growth expectations weaken, and firms' debt-servicing capacity deteriorates, raising default risk. Second, via the ERP dimension, moderate inflation expectations enhance market risk appetite and suppress systemic risk premiums, whereas extreme inflation expectations (either high or low) trigger heightened risk aversion, increasing required risk compensation and thus widening credit spreads.
Extending the analysis to the primary bond market, the study finds that moderate inflation expectations not only compress credit spreads in the secondary market but also reduce issuance yields, shorten issuance maturities, and improve issuers' financing flexibility at the issuance stage, indicating that inflation expectations directly shape real financing outcomes through the primary market. At the monetary policy level, further analysis reveals that unanticipated monetary easing shocks significantly raise inflation expectations and that unexpected policy actions affect bond market volatility by altering expectations. Both excessive expansionary and tightening unexpected monetary policies lead to increased bond yield volatility.
Based on these findings, the paper offers several policy suggestions: First, guide the market toward reasonable expectations. Stabilizing inflation expectations within a moderate range can enhance monetary policy transmission efficiency, reduce financing costs in both primary and secondary markets, and strengthen market resilience. Second, recognize the impact of inflation expectations on microeconomic agents and financial markets. Inflation expectations substantially influence both corporate and investor risk preferences. In the context of heightened global economic uncertainty, policymakers should more precisely identify and monitor both individual and market-wide expectations. Third, enhance policy transparency and consistency. Reducing the disruptive effects of unexpected policy shocks on market expectations, strengthening macroeconomic policy coordination, and combining institutional reforms with market mechanism improvements can further solidify the foundations of the corporate bond market.
The contributions of this study are threefold: First, it systematically documents the nonlinear U-shaped relationship between inflation expectations and corporate bond credit spreads in the Chinese market, linking macro-level expectation management with micro-level financing behavior. Second, it decomposes credit spreads into default risk premiums and excess risk premiums, uncovering their differentiated roles in the transmission process. Third, it incorporates monetary policy surprises into the analytical framework, underscoring the importance of policy communication in stabilizing market expectations. These findings provide empirical support for China's pursuit of high-quality economic growth and financial risk prevention, while also offering valuable insights for central banks worldwide in managing inflation expectations under volatile global financial conditions.
Keywords:  Inflation Expectations    Bond Credit Spreads    Default Risk Premiums    Excess Risk Premiums    Expectation Management
JEL分类号:  E31   G12   E58  
基金资助: *本文感谢国家社会科学基金资助重大专项项目(24ZDA035)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  刘俊杰,博士研究生,上海财经大学金融学院,E-mail:junjieliu2022@163.com.   
作者简介:  纪 敏,经济学博士,研究员,中国人民银行研究局(参事室),E-mail:minji65@sina.com.
邱丽萍,金融学博士,上海财经大学金融学院,E-mail:qlplibby@163.com.
杨 刚,金融学博士,中国民生银行金融市场研究中心,E-mail:gumpyang09@163.com.
高 洁,管理学博士,中国民生银行宏观研究中心,E-mail:gaojie_j@126.com.
引用本文:    
纪敏, 邱丽萍, 杨刚, 刘俊杰, 高洁. 通胀预期如何影响债券信用利差?[J]. 金融研究, 2025, 544(10): 1-20.
JI Min, QIU Liping, YANG Gang, LIU Junjie, GAO Jie. How Do Inflation Expectations Influence Bond Credit Spreads?. Journal of Financial Research, 2025, 544(10): 1-20.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V544/I10/1
[1]卞志村和张义,2012,《央行信息披露、实际干预与通胀预期管理》,《经济研究》第12期,第15~28页。
[2]陈选娟、杨刚和贾志敏,2022,《经济政策不确定性、展期风险与债券利差》,《国际金融研究》第9期,第77~86页。
[3]邓伟、杨红霞和刘冲,2024,《央行担保品政策如何支持实体经济?——基于商业信用的视角》,《管理世界》第2期,第86~103页。
[4]郭晔、黄振和王蕴,2016,《未预期货币政策与企业债券信用利差——基于固浮利差分解的研究》,《金融研究》第6期,第67~80页。
[5]郭豫媚、陈伟泽和陈彦斌,2016,《中国货币政策有效性下降与预期管理研究》,《经济研究》第1期,第28~41+83页。
[6]郭豫媚、王航、郭田勇和郭俊杰,2025,《中央银行通货膨胀预期管理有效性评估——基于文本通货膨胀预期指数的研究》,《金融研究》第4期,第1~20页。
[7]黄振和郭晔,2021,《央行担保品框架、债券信用利差与企业融资成本》,《经济研究》第1期,第105~121页。
[8]黎文靖和郑曼妮,2016,《通货膨胀预期、企业成长性与企业投资》,《统计研究》第5期,第34~42页。
[9]刘冲、庞元晨和刘莉亚,2022,《结构性货币政策、金融监管与利率传导效率——来自中国债券市场的证据》,《经济研究》第1期,第122~136页。
[10]刘津宇和苏治,2023,《债券市场开放的价格效应与境外货币政策传导》,《世界经济》第12期,第3~34页。
[11]陆蓉、朱思源和徐天丽,2022,《通货膨胀预期与企业金融化——基于“通货膨胀幻觉”的视角》,《财贸经济》第12期,第97~112页。
[12]饶品贵和张会丽,2015,《通货膨胀预期与企业现金持有行为》,《金融研究》第1期,第101~116页。
[13]宋芳秀和宋奎壁,2024,《公众异质预期、信息成本与货币政策传导》,《金融研究》第7期,第1~19页。
[14]王曦、王茜和陈中飞,2016,《货币政策预期与通货膨胀管理——基于消息冲击的DSGE分析》,《经济研究》第2期,第16~29页。
[15]王永钦和刘红劭,2024,《政策保障与中国债券市场高质量发展——一个统一的分析框架》,《管理世界》第5期,第1~27页。
[16]王永钦和吴娴,2019,《中国创新型货币政策如何发挥作用:抵押品渠道》,《经济研究》第12期,第86~101页。
[17]熊海芳和王志强,2012,《货币政策意外、利率期限结构与通货膨胀预期管理》,《世界经济》第6期,第30~55页。
[18]易纲,2023,《货币政策的自主性、有效性与经济金融稳定》,《经济研究》第6期,第19~29页。
[19]于静霞和周林,2015,《货币政策、宏观经济对企业债券信用利差的影响研究》,《财政研究》第5期,第49~57页。
[20]张成思,蒋仁智和林梦瑶,2025,《货币政策对通胀预期的影响机制研究》,《保险研究》第2期,第14~28页。
[21]张成思和田涵晖,2020,《结构性通货膨胀与通货膨胀预期形成机制》,《经济研究》第12期,第148~164页。
[22]郑怡君、吴文锋和胡悦,2024,《新型稳定性监管效果研究——来自债券市场的证据》,《经济研究》第12期,第167~185页。
[23]Baker, S. R., N. Bloom and S. J. Davis, 2016, “Measuring Economic Policy Uncertainty”, Quarterly Journal of Economics, 131(4), pp. 1593~1636.
[24]Bhamra, H. S., C. Dorion, A. Jeanneret and M.Weber, 2023, “High Inflation: Low Default Risk and Low Equity Valuations”, Review of Financial Studies, 36(3), pp. 1192~1252.
[25]Carlson, J. A. and M. Parkin, 1975, “Inflation Expectations”, Economica, 42(166), pp. 123~138.
[26]Chen, K., J. Ren and T. Zha, 2018, “The Nexus of Monetary Policy and Shadow Banking in China”, American Economic Review, 108(12), pp. 3891~3936.
[27]Coibion, O., Y. Gorodnichenko and M. Weber, 2022, “Monetary Policy Communications and Their Effects on Household Inflation Expectations”, Journal of Political Economy, 130(6), pp. 1537~1584.
[28]Collin-Dufresne, P., R. S. Goldstein and J. S. Martin, 2001, “The Determinants of Credit Spread Changes”, Journal of Finance, 56(6), pp. 2177~2207.
[29]David, A., 2008, “Inflation Uncertainty, Asset Valuations, and the Credit Spreads Puzzle”, Review of Financial Studies, 21(6), pp. 2487~2534.
[30]Di Giuli, A. and P. A. Laux, 2022, “The Effect of Media-Linked Directors on Financing and External Governance”, Journal of Financial Economics, 145(2), pp. 103~131.
[31]Diamond D W, 1991, “Debt Maturity Structure and Liquidity Risk”, The Quarterly Journal of Economics, 106(3), pp. 709~737.
[32]Duffee, G. R., 2018, “Expected Inflation and Other Determinants of Treasury Yields”, Journal of Finance, 73(5), pp. 2139~2180.
[33]Elton, E. J., M. J. Gruber, D. Agrawal and C. Mann, 2001, “Explaining the Rate Spread on Corporate Bonds”, Journal of Finance, 56(1), pp. 247~277.
[34]Eminidou, S., M. Zachariadis and E. Andreou, 2020, “Inflation Expectations and Monetary Policy Surprises”, Scandinavian Journal of Economics, 122(1), pp. 306~339.
[35]Eraker, B., I. Shaliastovich and W. Wang, 2016, “Durable Goods, Inflation Risk, and Equilibrium Asset Prices”, Review of Financial Studies, 29(1), pp. 193~231.
[36]Falck, E.,M. Hoffmann and R. Hürtgen,2021, “Disagreement about Inflation Expectations and Monetary Policy Transmission”, Journal of Monetary Economics, 118, pp.15~31.
[37]Gilchrist, S. and E. Zakrajšek, 2012, “Credit Spreads and Business Cycle Fluctuations”, American Economic Review, 102(4), pp. 1692~1720.
[38]Gomez-Cram, R. and A. Yaron, 2021, “How Important Are Inflation Expectations for the Nominal Yield Curve?”, Review of Financial Studies, 34(2), pp. 985~1045.
[39]Haubrich, J., G. Pennacchi and P. Ritchken, 2012, “Inflation Expectations, Real Rates, and Risk Premia: Evidence from Inflation Swaps”, Review of Financial Studies, 25(5), pp. 1588~1629.
[40]Helwege, J., Huang, J.Z. and Wang,Y., 2014, “Liquidity Effects in Corporate Bond Spreads”, Journal of Banking & Finance, 45, pp.105~116.
[41]Javadi, S., Nejadmalayeri, A. and Krehbiel, T.L., 2018, “Do FOMC Actions speak Loudly? Evidence from Corporate Bond Credit Spreads”, Review of Finance, 22(5), pp.1877~1909.
[42]Kang, J. and C. E. Pflueger, 2015, “Inflation Risk in Corporate Bonds”, Journal of Finance, 70(1), pp. 115~162.
[43]Lind, J.T. and H. Mehlum, 2010, “With or Without U? The Appropriate Test for a U-Shaped Relationship”, Oxford Bulletin of Economics and Statistics, 72, pp. 109~118.
[44]Lopez, J. A. and K. J. Mitchener, 2021, “Uncertainty and Hyperinflation: European Inflation Dynamics after World War I”, Economic Journal, 131(633), pp. 450~475.
[45]Merton, R. C., 1974, “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates”, Journal of Finance, 29(2), pp. 449~470.
[46]Schwert, M., 2017, “Municipal Bond Liquidity and Default Risk”, Journal of Finance, 72(4), pp. 1683~1722.
[47]Weber, M., F. d’Acunto, Y. Gorodnichenko and O. Coibion, 2022, “The Subjective Inflation Expectations of Households and Firms: Measurement, Determinants, and Implications”, Journal of Economic Perspectives, 36(3), pp. 157~184.
[48]Song, D., 2017, “Bond Market Exposures to Macroeconomic and Monetary Policy Risks”, The Review of Financial Studies, 30(8), pp.2761~2817.
[1] 蒋海, 孙娜, 李欣明. 央行预期管理能缓解银行流动性囤积吗?——基于前瞻性文本情绪指数的实证检验[J]. 金融研究, 2025, 540(6): 1-20.
[2] 郭豫媚, 王航, 郭田勇, 郭俊杰. 中央银行通货膨胀预期管理有效性评估——基于文本通货膨胀预期指数的研究[J]. 金融研究, 2025, 538(4): 1-20.
[3] 何富美, 刘兵, 欧阳志刚. 通胀预期不确定性的内需效应: 理论机制与经验证据[J]. 金融研究, 2025, 537(3): 1-20.
[4] 宋芳秀, 宋奎壁. 公众异质预期、信息成本与货币政策传导[J]. 金融研究, 2024, 529(7): 1-19.
[5] 余明桂, 安剑锋, 张萌萌. 董监高法律责任、投资者保护与债券市场高质量发展——来自新《证券法》实施的证据[J]. 金融研究, 2024, 534(12): 152-169.
[6] 甄红线, 吉继平. 债券市场开放影响债券信用利差吗?——基于“债券通”的准自然实验[J]. 金融研究, 2023, 522(12): 38-55.
[7] 王宇伟, 刘宏雅. 央行言辞沟通与银行信贷投放:总量与结构效应[J]. 金融研究, 2023, 521(11): 78-96.
[8] 陈国进, 丁赛杰, 赵向琴, 蒋晓宇. 中国绿色金融政策、融资成本与企业绿色转型——基于央行担保品政策视角[J]. 金融研究, 2021, 498(12): 75-95.
[9] 洪智武, 牛霖琳. 中国通货膨胀预期及其影响因素分析——基于混频无套利Nelson-Siegel利率期限结构扩展模型[J]. 金融研究, 2020, 486(12): 95-113.
[10] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1-17.
[11] 闫先东, 高文博. 中央银行信息披露与通货膨胀预期管理——我国央行信息披露指数的构建与实证检验[J]. 金融研究, 2017, 446(8): 35-49.
[12] 马理, 何梦泽, 刘艺. 基于适应性预期的货币政策传导研究[J]. 金融研究, 2016, 434(8): 19-33.
[13] 郭晔, 黄振, 王蕴. 未预期货币政策与企业债券信用利差——基于固浮利差分解的研究[J]. 金融研究, 2016, 432(6): 67-80.
[14] 张成思, 党 超. 谁的通胀预期影响了货币政策[J]. 金融研究, 2016, 436(10): 1-15.
[1] 白俊红, 吕晓红. FDI质量与中国经济发展方式转变[J]. 金融研究, 2017, 443(5): 47 -62 .
[2] 朱宁, 许艺煊, 邱光辉. 中央银行沟通对人民币汇率波动的影响[J]. 金融研究, 2016, 437(11): 32 -46 .
[3] 杨青, 吉赟, 王亚男. 高铁能提升分析师盈余预测的准确度吗?——来自上市公司的证据[J]. 金融研究, 2019, 465(3): 168 -188 .
[4] 牛霖琳, 林木材. 中国超长期国债的相对流动性溢价与收益率曲线的结构性建模[J]. 金融研究, 2017, 442(4): 17 -31 .
[5] 陶玲, 朱迎. 系统性金融风险的监测和度量——基于中国金融体系的研究[J]. 金融研究, 2016, 432(6): 18 -36 .
[6] 马勇. “双支柱”调控框架的理论与经验基础[J]. 金融研究, 2019, 474(12): 18 -37 .
[7] 罗进辉, 向元高, 金思静. 中国资本市场低价股的溢价之谜[J]. 金融研究, 2017, 439(1): 191 -206 .
[8] 邹瑾, 于焘华, 王大波. 人口老龄化与房价的区域差异研究——基于面板协整模型的实证分析[J]. 金融研究, 2015, 425(11): 64 -79 .
[9] 叶朝晖. 关于完善我国农业保险制度的思考[J]. 金融研究, 2018, 462(12): 174 -188 .
[10] 殷兴山, 易振华, 项燕彪. 总量型和结构型货币政策工具的选择与搭配——基于结构性去杠杆视角下的分析[J]. 金融研究, 2020, 480(6): 60 -77 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1