Please wait a minute...
金融研究  2025, Vol. 537 Issue (3): 150-168    
  本期目录 | 过刊浏览 | 高级检索 |
互动式信息披露与企业信用评级——来自证券交易所互动平台的经验证据
孙洁, 李能飞, 赵梦茹
天津财经大学会计学院,天津 300222;
咸阳师范学院经济与管理学院,陕西咸阳 712000
Interactive Information Disclosure and Issuer Credit Ratings: Evidence from Stock Exchange Interactive Platforms
SUN Jie, LI Nengfei, ZHAO Mengru
School of Accounting, Tianjin University of Finance and Economics;
School of Economics and Management, Xianyang Normal University
下载:  PDF (739KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文利用2013—2023年中国上市公司数据,考察证券交易所互动平台信息披露文本特征对企业主体信用评级的影响。研究发现:互动式文本负面语调与管理者策略性回应行为显著降低企业主体信用评级水平,该效应在具有较高声誉的评级机构和外资评级机构中更为明显。机制分析发现,互动式信息披露文本特征会通过影响评级调整因素进而作用于企业主体信用评级水平,即互动式信息披露文本负面语调通过加剧企业融资约束与债务代理成本,策略性回应则通过扩大信息不对称与降低股票流动性影响评级决策。经济后果检验发现,互动式文本负面语调与管理者策略性回应会减少企业商业信用融资规模并推高债券发行成本。本文从动态信息披露视角揭示了互动式信息披露文本特征影响企业主体信用评级的微观机制,对优化交易所互动平台治理具有实践启示意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙洁
李能飞
赵梦茹
关键词:  互动式信息披露  信用评级  负面语调  策略性回应    
Summary:  Against the backdrop of the current rapid development of the capital market, the quality of information disclosure is particularly critical to the quality development of companies. As a supplement to mandatory information disclosure, the interactive platforms of stock exchanges have become an important innovation in improving investor relations management through a two-way communication mechanism. On the interactive platform, instant Q&A between investors and companies can reflect not only the companies' response strategy to market dynamics, but also the level of voluntary disclosure by companies, which has become an important dimension in assessing the quality of information disclosure. Credit rating agencies (CRAs), as important information intermediaries in the capital market, rely on diversified information for their risk assessment. Therefore, the timeliness and unstructured feature of Q&A information on interactive platforms can be an effective reference for rating agencies. The rating system requires CRAs to combine quantitative information with qualitative analysis in an organic way, which further elevates the importance of non-standardized textual information in rating decisions. However, existing research focuses on the impact of financial indicators on rating outcomes, and the value of textual information disclosed via interactive platforms is still underexplored. Theoretically, the Q&A information of interactive platforms may significantly affect the level of corporate credit ratings through rating adjustment factors, but this path has not yet been empirically tested. Therefore, the purpose of this paper is to explore in depth the effect of interactive disclosure on corporate credit ratings and provide decision support for stakeholders.
To address the above issues, we select a research sample of Chinese A-share listed companies in Shanghai and Shenzhen from 2013 to 2023. We find, first, that the negative tone of interactive disclosure texts and strategic managerial responses significantly lowers the level of issuer credit ratings, and this effect is more pronounced for rating agencies with higher reputations and foreign backgrounds. Second, the negative tone of interactive disclosure texts lowers issuer credit ratings by intensifying corporate financing constraints and increasing debt agency costs, and the strategic response lowers issuer credit ratings by increasing information asymmetry and decreasing stock liquidity. Third, the downgrade in issuer credit ratings caused by the negative tone of interactive disclosure texts and strategic responses may further reduce the amount of trade credit financing available to firms and increase the cost of bond issuance.
The marginal contributions of this paper are mainly as follows: First, it enriches the research boundaries related to the economic consequences of interactive disclosure. Contrary to existing studies, the complex relationship between interactive disclosure and issuer credit ratings is explored in depth from the perspective of the textual features of interactive disclosure, further expanding the research boundaries on the economic consequences of interactive disclosure. Second, it enriches research on the factors influencing credit ratings. By using natural language processing (NLP) technology to construct textual indicators, the effective value of textual information of interactive disclosure on credit ratings is systematically presented. Third, from the perspective of debt financing, the economic impact of interactive disclosure on trade credit financing and bond issuance costs is examined through the financing intermediary role of credit ratings, further enriching research in this area. Fourth, by analyzing the mechanisms, heterogeneity and economic consequences of the textual features of interactive disclosure on issuer credit ratings, we not only deepen the theoretical understanding of the qualitative features of interactive disclosure and the determinants of credit ratings, but also provide useful policy insights for improving the construction of interactive platforms on stock exchanges to support better rating decisions by CRAs.
The policy implications of this paper are as follows: from the corporate level, firms should establish a complete interactive information processing management system. First, companies can implement a categorical response mechanism, use NLP technology to identify high-frequency questions, and require the secretary of the board of directors to conduct a second-level verification and source annotation for important responses. Second, companies can develop an impact analysis system for information disclosure, and anticipate the impact of responses on issuer credit ratings and debt financing so as to avoid avoiding the truth. At the rating agency level, CARs should use sentiment analysis models to quantify the proportion of negative tone and capture changes in management attitudes. They can use semantic association mapping techniques to identify response strategies and incorporate the analysis into credit rating models. At the investor level, investors should explore the textual features of interactive information from multiple perspectives, quantify the proportion of both negative tone and the degree of strategic intent, and comprehensively assess the development prospects of companies. At the regulatory level, regulators should optimize the operating mechanism of the exchanges' interactive platform. First, regulators can establish a categorized review and quality assessment system that requires substantive responses and reduces ambiguity, with regular quality spot checks by the exchange. Second, regulators can jointly develop automated monitoring tools to capture and assess risk signals in real time and incorporate them into credit file management.
Keywords:  Interactive Disclosure    Credit Rating    Negative Tone    Strategic Response
JEL分类号:  D21   G30  
基金资助: * 本文感谢国家自然科学基金面上项目(72271174)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  李能飞,管理学博士,讲师,咸阳师范学院经济与管理学院,E-mail:lnf1209@163.com.   
作者简介:  孙 洁,管理学博士,教授,天津财经大学会计学院,E-mail:sunjiehit@gmail.com.
赵梦茹,博士研究生,天津财经大学会计学院,E-mail:zhaomryx@163.com.
引用本文:    
孙洁, 李能飞, 赵梦茹. 互动式信息披露与企业信用评级——来自证券交易所互动平台的经验证据[J]. 金融研究, 2025, 537(3): 150-168.
SUN Jie, LI Nengfei, ZHAO Mengru. Interactive Information Disclosure and Issuer Credit Ratings: Evidence from Stock Exchange Interactive Platforms. Journal of Financial Research, 2025, 537(3): 150-168.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V537/I3/150
[1]敖小波、林晚发和李晓慧,2017,《内部控制质量与债券信用评级》,《审计研究》第2期,第57~64页。
[2]卞世博、陈曜、管之凡和周金花,2023,《高质量的互动可以提高股票价格信息效率吗——基于“上证e互动”的研究》,《会计研究》第4期,第102~117页。
[3]卞世博、陈曜和汪训孝,2022,《高质量的互动可以提高股票市场定价效率吗?——基于“上证e互动”的研究》,《经济学(季刊)》第3期,第749~772页。
[4]蔡贵龙、张亚楠、徐悦和卢锐,2022,《投资者—上市公司互动与资本市场资源配置效率——基于权益资本成本的经验证据》,《管理世界》第8期,第199~217页。
[5]曹新伟、洪剑峭和贾琬娇,2015,《分析师实地调研与资本市场信息效率——基于股价同步性的研究》,《经济管理》第8期,第141~150页。
[6]常莹莹和曾泉,2019,《环境信息透明度与企业信用评级——基于债券评级市场的经验证据》,《金融研究》第5期,第132~151页。
[7]陈关亭、连立帅和朱松,2021,《多重信用评级与债券融资成本——来自中国债券市场的经验证据》,《金融研究》第2期,第94~113页。
[8]丁慧、吕长江和陈运佳,2018,《投资者信息能力:意见分歧与股价崩盘风险——来自社交媒体“上证e互动”的证据》,《管理世界》第9期,第161~171页。
[9]管考磊、朱海宁和刘洋,2023,《网络平台互动能缓解资产误定价吗——来自交易所互动平台的经验证据》,《会计研究》第8期,第33~45页。
[10]李海燕和厉夫宁,2008,《独立审计对债权人的保护作用——来自债务代理成本的证据》,《审计研究》第3期,第81~93页。
[11]李文贵和路军,2022,《网络平台互动与股价崩盘风险:“沟通易”还是“操纵易”》,《中国工业经济》第7期,第178~196页。
[12]林晚发、方梅和沈宇航,2021,《债券募集说明书文本信息与债券发行定价》,《管理科学》第4期,第19~34页。
[13]林晚发、何剑波、周畅和张忠诚,2017,《“投资者付费”模式对“发行人付费”模式评级的影响:基于中债资信评级的实验证据》,《会计研究》第9期,第62~68页。
[14]林晚发、钟辉勇、赵仲匡和宋敏,2022,《金融中介机构竞争的市场反应——来自信用评级机构的证据》,《金融研究》第4期,第77~96页。
[15]刘娥平和施燕平,2014,《盈余管理、公司债券融资成本与首次信用评级》,《管理科学》第5期,第91~103页。
[16]刘欢、邓路和廖明情,2015,《公司的市场地位会影响商业信用规模吗?》,《系统工程理论与实践》第12期,第3119~3134页。
[17]刘星、张智慧和杨羚璇,2021,《分析师跟踪会影响企业主体信用评级吗?——基于我国信用债市场的经验证据》,《财贸研究》第1期,第69~82页。
[18]刘星和杨羚璇,2022,《信用评级变动能反映企业真实财务信息吗?——基于财务重述的视角》,《金融研究》第2期,第98~116页。
[19]孟庆斌、黄清华、张劲帆和王松,2020,《上市公司与投资者的互联网沟通具有信息含量吗?——基于深交所“互动易”的研究》,《经济学(季刊)》第2期,第637~662页。
[20]谭松涛、阚铄和崔小勇,2016,《互联网沟通能够改善市场信息效率吗?——基于深交所“互动易”网络平台的研究》,《金融研究》第3期,第174~188页。
[21]王雄元和张春强,2013,《声誉机制、信用评级与中期票据融资成本》,《金融研究》第8期,第150~164页。
[22]吴秋生和黄贤环,2017,《财务公司的职能配置与集团成员上市公司融资约束缓解》,《中国工业经济》第9期,第156~173页。
[23]吴育辉、翟玲玲、张润楠和魏志华,2020《“投资人付费”vs.“发行人付费”:谁的信用评级质量更高?》,《金融研究》第1期,第130~149页。
[24]熊家财和苏冬蔚,2016,《股票流动性与代理成本——基于随机前沿模型的实证研究》,《南开管理评论》第1期,第84~96页。
[25]徐寿福、郑迎飞和罗雨杰,2022,《网络平台互动与股票异质性风险》,《财经研究》第10期,第153~168页。
[26]徐寿福、郑迎飞和张嘉宸,2023,《网络平台互动、策略性回应与股票错误定价》,《经济管理》第11期,第189~208页。
[27]徐晓萍、阮永锋和刘音露,2018,《市场竞争降低评级质量了吗——基于新进入评级机构的实证研究》,《财贸经济》第11期,第96~111页。
[28]杨凡和张玉明,2020,《网络媒介、互动式信息披露与分析师行为——来自“上证e互动”的证据》,《山西财经大学学报》第11期,第113~126页。
[29]张春强、鲍群和盛明泉,2019,《公司债券违约的信用风险传染效应研究——来自同行业公司发债定价的经验证据》,《经济管理》第1期,第174~190页。
[30]赵杨、林琳和杨斌,2023,《互动式信息披露的质量特征及其影响因素研究》,《中国软科学》第7期,第127~141页。
[31]Attig, N., El Ghoul, S., Guedhami, O. and Suh, J., 2013, “Corporate Social Responsibility and Credit Ratings”, Journal of Business Ethics,117(4), pp. 679~694.
[32]Bae, K., Kang, J. and Wang, J., 2015, “Does Increased Competition Affect Credit Ratings? A Reexamination of the Effect of Fitch's Market Share on Credit Ratings in the Corporate Bond Market”, Journal of Financial and Quantitative Analysis, 50(5), pp. 1011~1035.
[33]Baker, H. K., Dutta, S., Saadi, S. and Zhong, L., 2022, “Does Media Coverage Affect Credit Rating Change Decisions?”, Journal of Banking & Finance, 145, p. 106667.
[34]Brogaard, J., Li, D. and Xia, Y., 2017, “Stock Liquidity and Default Risk”, Journal of Financial Economics, 124(3), pp. 486~502.
[35]Cornaggia, K. J., Krishnan, G. V. and Wang, C., 2017, “Managerial Ability and Credit Ratings”, Contemporary Accounting Research, 34(4), pp. 2094~2122.
[36]Griffin, J. M. and Tang, D. Y., 2012, “Did Subjectivity Play a Role in CDO Credit Ratings?”, The Journal of Finance, 67(4), pp. 1293~1328.
[37]Lee, C. M. C. and Zhong, Q., 2022, “Shall We Talk? The Role of Interactive Investor Platforms in Corporate Communication”, Journal of Accounting and Economics, 74(2~3), p. 101524.
[38]Li, C., Wu, M., Chen, X. and Huang, W., 2022, “Environmental, Social and Governance Performance, Corporate Transparency, and Credit Rating: Some Evidence from Chinese A-share Listed Companies”, Pacific~Basin Finance Journal, 74, p. 101806.
[1] 连立帅, 朱松. 取消强制评级政策、评级机构声誉与信用评级质量 ——基于中国债券市场的实证研究[J]. 金融研究, 2023, 520(10): 125-144.
[2] 林晚发, 钟辉勇, 赵仲匡, 宋敏. 金融中介机构竞争的市场反应 ——来自信用评级机构的证据[J]. 金融研究, 2022, 502(4): 77-96.
[3] 刘星, 杨羚璇. 信用评级变动能反映企业真实财务信息吗?——基于财务重述的视角[J]. 金融研究, 2022, 500(2): 98-116.
[4] 邢秉昆. 碳减排约束下中国工业企业信用评级[J]. 金融研究, 2022, 509(11): 77-97.
[5] 郎香香, 田亚男, 迟国泰. 债券评级机构变更——基于评级选购与评级迎合视角[J]. 金融研究, 2022, 499(1): 135-152.
[6] 陈关亭, 连立帅, 朱松. 多重信用评级与债券融资成本——来自中国债券市场的经验证据[J]. 金融研究, 2021, 488(2): 94-113.
[7] 林晚发, 赵仲匡, 刘颖斐, 宋敏. 债券市场的评级信息能改善股票市场信息环境吗? ——来自分析师预测的证据[J]. 金融研究, 2020, 478(4): 166-185.
[8] 吴育辉, 翟玲玲, 张润楠, 魏志华. “投资人付费”vs.“发行人付费”:谁的信用评级质量更高?[J]. 金融研究, 2020, 475(1): 130-149.
[9] 常莹莹, 曾泉. 环境信息透明度与企业信用评级——基于债券评级市场的经验证据[J]. 金融研究, 2019, 467(5): 132-151.
[10] 杨国超, 盘宇章. 信任被定价了吗? ——来自债券市场的证据[J]. 金融研究, 2019, 463(1): 35-53.
[11] 许友传. 银行信用评级的信息质量及其次级债事前约束[J]. 金融研究, 2017, 445(7): 105-122.
[12] 黄小琳, 朱松, 陈关亭. 劳动投资效率、企业性质与资产收益率[J]. 金融研究, 2017, 441(3): 130-144.
[13] 李明明, 秦凤鸣. 主权信用评级、债务危机与经济增长——来自欧元区国家的经验证据[J]. 金融研究, 2016, 436(10): 16-31.
[14] 寇宗来, 盘宇章, 刘学悦. 中国的信用评级真的影响发债成本吗?[J]. 金融研究, 2015, 424(10): 81-98.
[1] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[2] 丁志杰, 谢峰. 汇率对中等收入国家经济跨越的影响研究[J]. 金融研究, 2017, 440(2): 42 -53 .
[3] 彭方平, 欧阳志刚, 展凯, 刘良. 我国落入债务陷阱了吗?——理论模型与经验证据[J]. 金融研究, 2017, 440(2): 70 -83 .
[4] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[5] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1 -17 .
[6] 李春涛, 刘贝贝, 周鹏. 卖空与信息披露:融券准自然实验的证据[J]. 金融研究, 2017, 447(9): 130 -145 .
[7] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83 -98 .
[8] 李锋森. 我国融资融券助涨助跌了吗?——基于波动非对称性视角[J]. 金融研究, 2017, 440(2): 147 -162 .
[9] 周桦, 张娟. 偿付能力监管制度改革与保险公司成本效率——基于中国财险市场的经验数据[J]. 金融研究, 2017, 442(4): 128 -142 .
[10] 徐浩萍, 施海娜, 金彧昉. 新股定价基础:历史业绩还是技术创新?——基于中国创业板市场的研究[J]. 金融研究, 2017, 442(4): 191 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1