Please wait a minute...
金融研究  2024, Vol. 534 Issue (12): 20-39    
  本期目录 | 过刊浏览 | 高级检索 |
利率变动、交易行为与金融稳定——一个融合异质信念的异质代理人连续时间DSGE模型
闫昱, 童彦, 哈斯木其尔, 金桩
北京外国语大学国际商学院,北京 100089;
中国科学院大学经济与管理学院,北京 100190;
中南财经政法大学金融学院,湖北武汉 430073;
内蒙古财经大学,内蒙古自治区呼和浩特 010051
Interest Rate Changes, Trading Behaviour and Financial Stability——A Continuous-Time DSGE Model with Heterogeneous Agents and Beliefs
YAN Yu, TONG Yan, HASI Muqier, JIN Zhuang
International Business School, Beijing Foreign Studies University;
School of Economics and Management, University of Chinese Academy of Sciences;
School of Finance, Zhongnan University of Economics and Law;
Inner Mongolia University of Finance and Economics
下载:  PDF (1022KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 货币政策的微调一定程度上会影响风险资产投资者的交易情绪,而交易者情绪与金融市场稳定性之间的相互作用一直是金融学研究的焦点之一,但现有研究对这一机制的整体解析并不明确。本文采用了一个融合异质信念的异质代理人连续时间DSGE模型,以探讨预期形式的差异如何影响金融市场对利率变动的响应,通过引入异质性预期来对风险资产价格进行更加立体化的讨论。具体而言,投资者被分为以长期投资者为代表的收敛型预期交易者和以程序化交易及追涨杀跌为代表的外推型交易者。风险资产的价格可以被表示为红利和预期的显式表达。通过与经典的生产端分析相结合,我们成功地为这一模型提供了一个完整的解析解。数值模拟结果显示,外推型交易者会干扰利率变动对金融市场的影响。同时,外推型交易者权重的变化会显著影响不同经济变量的波动。这一研究可以帮助我们更好地理解风险资产价格如何受到外生过程和交易者预期的影响,帮助监管机构更为精准地引导和管理投资者的情绪。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫昱
童彦
哈斯木其尔
金桩
关键词:  异质信念  DSGE  过度反应  货币政策    
Summary:  The fine-tuning of monetary policy always influences the trading sentiment of investors in risk assets to some extent. The interaction between trader sentiment and financial market stability has been a focal point in financial research. However, existing studies have not provided a comprehensive understanding of this mechanism.
This paper establishes a heterogeneous agent continuous-time DSGE model that incorporates heterogeneous beliefs to explore how differences in expected forms affect responses to monetary policy. By introducing heterogeneous expectations, a more thorough discussion of risk asset pricing is achieved. Specifically, investors are divided into convergent expectation traders, represented by institutional investors, and extrapolative expectation traders, characterized by algorithmic trading and momentum strategies. The price of risk assets can be expressed as an explicit expression of dividends and expectations. This paper provides an analytical solution for risk asset pricing under the assumption of heterogeneous expectations, enhancing the understanding of how prices are influenced by exogenous processes and trader expectations. The well-defined property of this equation reveals a clear relationship between risk asset prices and various exogenous processes, serving as a foundation for numerical simulations and offering significant references for future empirical asset pricing model designs.
One of the key contributions of this study is the integration of stock market trading behaviors' amplification effects on monetary policy into a classic continuous-time general equilibrium model, facilitating a unified discussion of the excess volatility puzzle and financial stability. Despite the frequent continuous oscillation of risk asset prices and extensive literature examining stock price responses to monetary policy shocks, this paper presents a novel perspective based on heterogeneous beliefs within a general equilibrium framework.
Numerical simulation results indicate that irrational traders who follow trends influence the effects of monetary policy shocks on financial markets. The findings show that accommodative monetary policy directly influences the movements of risk asset prices. When traders expect that monetary easing will continue, they choose to increase their investments in risk assets, resulting in a sustained upward trend in prices. During this process, extrapolative expectation traders recognize this trend, forming expectations of continued price increases and actively reallocating assets, further driving up risk asset prices.
Financial market stability has long been an important research topic in economics and finance. However, the rational behaviors and equilibrium assumptions in traditional theories fail to fully explain actual market operations. Many studies demonstrate the presence of various types of investors in financial markets, particularly focusing on extrapolative expectation traders, whose behavior is primarily driven by emotions and psychological factors, deviating from rational expectations based on fundamentals and market equilibrium. This paper investigates the impact of extrapolative expectation traders on financial stability, exploring their behavioral patterns, market influences, and the potential risks and challenges they pose to financial stability. The results indicate that the pattern of behavior of extrapolative expectation traders significantly affects the stability of financial markets.
This paper not only focuses on the effects of extrapolative expectations on financial markets but also examines their impact on the effects of monetary policy changes. Given the close relationship between monetary policy formulation and financial regulation in China, policymakers need to coordinate closely with regulatory bodies to craft effective policy measures.
Thus, monetary policymakers must monitor the behaviors of different types of expectation traders in the market closely and take appropriate policy actions. For instance, when the market overly relies on extrapolative expectations and forms noticeable price bubbles, policymakers can adopt tighter monetary policies to curb market overheating and prevent instability. Additionally, they can enhance market transparency and efficiency through information disclosure and regulation, reducing distortions caused by information asymmetry and incompleteness.
To maintain financial market stability, it is essential to strengthen both monitoring and management of extrapolative expectation traders' behaviors, improve investors' rational decision-making capabilities and risk management awareness, reinforce information disclosure and regulatory frameworks, and enhance international cooperation to collectively address these impacts, thereby improving market efficiency and stability and promoting sustainable economic development.
Keywords:  Heterogeneous Beliefs    DSGE    Overreaction    Monetary Policy
JEL分类号:  E22   E44   E52  
基金资助: * 本文感谢国家资助博士后研究人员计划(GZB20230018)的资助。感谢匿名审稿人的宝贵意见, 文责自负。
通讯作者:  金 桩, 经济学博士, 教授, 内蒙古财经大学, E-mail: Jinzhuang@sina.com.   
作者简介:  闫 昱, 金融学博士, 讲师, 北京外国语大学国际商学院, E-mail:yanyu95@pku.edu.cn.
童 彦, 博士研究生, 中国科学院大学经济与管理学院, E-mail: tongyan24@mails.ucas.ac.cn.
哈斯木其尔, 博士研究生, 中南财经政法大学金融学院, E-mail: hasimuqier1003@163.com.
引用本文:    
闫昱, 童彦, 哈斯木其尔, 金桩. 利率变动、交易行为与金融稳定——一个融合异质信念的异质代理人连续时间DSGE模型[J]. 金融研究, 2024, 534(12): 20-39.
YAN Yu, TONG Yan, HASI Muqier, JIN Zhuang. Interest Rate Changes, Trading Behaviour and Financial Stability——A Continuous-Time DSGE Model with Heterogeneous Agents and Beliefs. Journal of Financial Research, 2024, 534(12): 20-39.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V534/I12/20
[1]卞志村和高洁超, 2014,《适应性学习, 宏观经济预期与中国最优货币政策》, 《经济研究》第4期, 第32~46页。
[2]邓燕飞、董丰、徐迎风和冯文伟, 2017, 《价格刚性, 异质性预期和通货膨胀动态》, 《管理世界》第9期, 第17~26页。
[3]李力、王博、刘潇潇和郝大鹏, 2016,《短期资本, 货币政策和金融稳定》, 《金融研究》第9期, 第18~32页。
[4]刘海波, 邵飞飞和钟学超, 2019, 《我国结构性减税政策及其收入分配效应——基于异质性家庭NK-DSGE的模拟分析》, 《财政研究》第3期, 第30~46页。
[5]宫庆彬和刁训娣, 2024, 《投资者异质性、分红与资产价格的复杂动态》, 《管理工程学报》第3期, 第46~57页。
[6]江春,向丽锦和肖祖沔,2018,《货币政策、收入分配及经济福利——基于DSGE模型的贝叶斯估计》,《财贸经济》第3期,第17~34页。
[7]谭政勋、刘娟和郑尊信, 2024, 《全要素生产率、投资者外推预期与中国股票市场异象》,《经济研究》第2期, 第97~115页。
[8]潘敏和周闯, 2019, 《宏观审慎监管, 房地产市场调控和金融稳定——基于贷款价值比的 DSGE 模型分析》, 《国际金融研究》第4期, 第14~23页。
[9]司登奎、葛新宇、曾涛和李小林, 2019, 《房价波动, 金融稳定与最优宏观审慎政策》, 《金融研究》第11期, 第38~56页。
[10]王曦、王茜和陈中飞, 2016, 《货币政策预期与通货膨胀管理——基于消息冲击的 DSGE 分析》, 《经济研究》第2期, 第16~29页。
[11]王自力, 2005, 《金融稳定与货币稳定关系论》, 《金融研究》第5期, 第1~11页。
[12]吴念鲁和郧会梅, 2005, 《对我国金融稳定性的再认识》, 《金融研究》第2期, 第152~158页。
[13]邢曙光和黄梅波, 2015, 《最优区域间转移支付规则》, 《金融研究》第11期, 第98~114页。
[14]张晓芳和张宸瑄, 2020, 《我国家庭消费结构与货币政策效果分析——基于异质性家庭的DSGE模型》, 《软科学》,第5期, 第43~49页。
[15]张雪兰和何德旭, 2012, 《货币政策立场与银行风险承担——基于中国银行业的实证研究 (2000—2010)》,《经济研究》第5期, 第31~44页。
[16]赵玮和李勇, 2022, 《需求结构、异质性预期和房价波动——兼论限购限贷政策与货币政策效果》, 《南开经济研究》第7期, 第81~99页。
[17]Bacchetta, P., E. Mertens, and E. V. Wincoop, 2009, “Predictability in Financial Markets: What Do Survey Expectations Tell Us?”, Journal of International Money and Finance, 28(3), pp. 406~426.
[18]Barberis, N., R. L. Greenwood, and A. Shleifer, 2015, “X-CAPM: An Extrapolative Capital Asset Pricing Model.”, Journal of Financial Economics, 115(1), pp. 1~24.
[19]Barberis, N., A. Shleifer, and R. Vishny, 1998, “A Model of Investor Sentiment. ”, Journal of Financial Economics, 49, pp. 307~343.
[20]Bilbiie, F. O., 2008, “Limited Asset Markets Participation, Monetary Policy and (Inverted) Aggregate Demand Logic.”, Journal of Economic Theory, 140 (1), pp. 162~196.
[21]Bollerslev, T., and R. T. Baillie, 1990, “A Multivariate Generalized ARCH Approach to Modeling Risk Premia in Forward Foreign Exchange Rate Markets”, Journal of International Money and Finance, 19(3), pp. 309~324.
[22]Brock, W. A. and C. H. Hommes, 1998, “Heterogeneous Beliefs and Routes To Chaos in A Simple Asset Pricing Model. ”, Journal of Economic Dynamics and Control, 22(8-9), pp. 1235~1274.
[23]Campbell, J. Y., and N. G. Mankiw., 1989, “Consumption, Income and Interest Rates: Reinterpreting the Time Series Evidence.”,NBER Macroeconomics Annual 1989, 4, pp. 185~246.
[24]Challe, E., J. Matheron, X. Ragot, and J. F. Rubio-Ramirez, 2017, “Precautionary Saving and Aggregate Demand.”, Quantitative Economics, 8 (2), pp. 435~478.
[25]Daniel, K. D., D. Hirshleifer, and A. Subrahmanyam, 1998, “Investor Psychology and Security Market Under-and Overreactions. ”, The Journal of Finance, 53(6), pp. 1839~1885.
[26]Engle, R. F., 2002, “Dynamic Conditional Correlation:A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models”, Journal of Business & Economic Statistics,20(3), pp. 339~350.
[27]Gali, J. 2014, “Monetary Policy and Rational Asset Price Bubbles. ”, American Economic Review, 104(3), pp. 721~752.
[28]Golosov, M., J. Hassler, P. Krusell, and A. Tsyvinski, 2014,“Optimal Taxes on Fossil Fuel in General Equilibrium”, Econometrica, 82(1), pp. 41~88.
[29]Gromb, D.,and D. Vayanos, 2002, “ Equilibrium and Welfare in Markets with Financially Constrained Arbitrageurs.”, Journal of Financial Economics, 66(2-3), pp. 361~407.
[30]Harrison, J. M., and D. M. Kreps, 1978, “Speculative Investor Behavior in a Stock Market with Heterogeneous Expectations. ”, The Quarterly Journal of Economics, 92(2), pp. 323~336.
[31]Hirshleifer, D., J. Li, and J. Yu, 2015, “Asset Pricing in Production Economies with Extrapolative Expectations.”, Journal of Monetary Economics, 76, pp. 87~106.
[32]Kaplan, G., B. Moll, and G. L. Violante, 2018, “Monetary Policy According To HANK. ”, American Economic Review, 108(3), pp. 697~743.
[33]Krusell, P., and A. Smith, 1998, “Income and Wealth Heterogeneity in the Macroeconomy”, Journal of Political Economy, 106(5), pp. 867~896.
[34]Kyle, A. S. and W. Xiong, 2001, “Contagion As A Wealth Effect. ”, The Journal of Finance, 56(4), pp. 1401~1440.
[35]Massaro, D., 2013, “Heterogeneous Expectations in Monetary DSGE Models”, Journal of Economic Dynamics and Control, 37(3), pp. 680~692.
[36]Shiller, R. J., 1981, “Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends? ”, American Economic Review, 71(3), pp. 421~436.
[37]Werning, I., 2015, “Incomplete Markets and Aggregate Demand (No. w21448)”, National Bureau of Economic Research.
[38]Xiong, W., 2001, “Convergence Trading With Wealth Effects: An Amplification Mechanism in Financial Markets. ”, Journal of Financial Economics, 62(2), pp. 247~292.
[39]Yan, Y., Y. Tong, and Y. Wang, 2024, “Contagion Mechanisms Under Heterogeneous Beliefs”, Applied Economics, pp. 1~25.
[1] 范志勇, 安戈洋, 章永辉. 银行间市场短端利率波动与货币政策传导效率——基于利率互换市场高频识别与局部投影方法[J]. 金融研究, 2024, 531(9): 1-19.
[2] 马理, 张人中, 马威. 绿色结构性货币政策的实施效果与传导机理研究[J]. 金融研究, 2024, 529(7): 40-58.
[3] 巩冰, 张蓓, 杨斯尧, 徐照宜. “双碳”目标下碳减排支持工具对商业银行市场价值的影响研究[J]. 金融研究, 2024, 529(7): 77-95.
[4] 董青马, 张皓越, 马剑文, 尚玉皇. 央行沟通与资产价格——识别“潜在”未预期货币政策信息[J]. 金融研究, 2024, 528(6): 40-59.
[5] 林建浩, 陈良源, 黄颖平. 识别货币政策操作的多重冲击及其经济效应[J]. 金融研究, 2024, 527(5): 20-38.
[6] 陈国进, 丁赛杰, 赵向琴. 绿色结构性货币政策、政策预期与经济绿色转型[J]. 金融研究, 2024, 526(4): 1-19.
[7] 徐飘洋, 王博. “双支柱”政策的结构性功能——基于产业绿色转型视角[J]. 金融研究, 2024, 524(2): 19-37.
[8] 谭小芬, 李子若, 赵茜, 卢冰. 货币政策分化与跨境银行资本流动的部门间配置——兼论官方部门的“缓冲器”作用[J]. 金融研究, 2024, 534(12): 1-19.
[9] 张成思, 徐硕, 何启志. 国债收益率曲线仿射模型与期限传递机制研究[J]. 金融研究, 2024, 534(12): 59-77.
[10] 林滨, 孙乾, 王弟海. 不确定性冲击、结构性失业与稳就业政策——基于公共—企业两部门定向搜寻匹配模型的研究[J]. 金融研究, 2024, 533(11): 1-19.
[11] 张伟伟, 张景静, 陈攀, 张德涛. 估值修复还是信息混淆?——基于多方ESG评级与股票错误定价的研究[J]. 金融研究, 2024, 533(11): 170-188.
[12] 王辉, 朱家雲, 胡诣聪. 央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角[J]. 金融研究, 2023, 519(9): 1-19.
[13] 梅冬州, 宋佳馨, 马振宇. 美联储货币政策紧缩的跨国异质性影响研究[J]. 金融研究, 2023, 517(7): 1-20.
[14] 董丰, 周基航, 贾彦东. 资产泡沫与最优货币政策[J]. 金融研究, 2023, 516(6): 1-19.
[15] 钟山, 林木材, 洪智武. 金融网络视角下的银行间市场基准利率体系与货币政策冲击传导[J]. 金融研究, 2023, 516(6): 20-37.
[1] 刘红忠, 毛杰. P2P网络借贷平台爆发风险事件问题的研究——基于实物期权理论的视角[J]. 金融研究, 2018, 461(11): 119 -132 .
[2] 易纲. 中国的利率体系与利率市场化改革[J]. 金融研究, 2021, 495(9): 1 -11 .
[3] 张路, 李金彩, 袁振超, 岳衡. 管理者能力与资本市场稳定[J]. 金融研究, 2021, 495(9): 188 -206 .
[4] 冯根福, 刘虹, 冯照桢, 温军. 股票流动性会促进我国企业技术创新吗?[J]. 金融研究, 2017, 441(3): 192 -206 .
[5] 耿志祥, 孙祁祥. 人口老龄化、延迟退休与二次人口红利[J]. 金融研究, 2017, 439(1): 52 -68 .
[6] 沈春苗, 郑江淮. 中国企业“走出去” 获得发达国家“核心技术”了吗? ——基于技能偏向性技术进步视角的分析[J]. 金融研究, 2019, 463(1): 111 -127 .
[7] 王博, 徐飘洋. 碳定价、双重金融摩擦与“双支柱”调控[J]. 金融研究, 2021, 498(12): 57 -74 .
[8] 徐璐, 叶光亮. 存款保险、市场竞争与银行经营稳健性[J]. 金融研究, 2022, 499(1): 115 -134 .
[9] 高明, 胡聪慧. 正规金融与非正规金融:机制、效率与实证挑战[J]. 金融研究, 2022, 503(5): 189 -206 .
[10] 孙浦阳, 张龑, 黄玖立. 出口行为、边际成本与销售波动——基于中国工业企业数据的研究[J]. 金融研究, 2015, 423(9): 159 -173 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1