Please wait a minute...
金融研究  2024, Vol. 528 Issue (6): 151-168    
  本期目录 | 过刊浏览 | 高级检索 |
数字经济发展、资产配置效率与居民财产性收入——来自中国家庭微观调查数据的证据
周利, 吴雨, 易行健
广东外语外贸大学金融学院,广州 510006;
南京农业大学金融学院,南京 210095;
广东金融学院金融与投资学院,广州 510521
Digital Economy, Asset Allocation Efficiency and Household Property Income ——Evidence from China Household Finance Survey
ZHOU Li, WU Yu, YI Xingjian
School of Finance, Guangdong University of Foreign Studies;
College of Finance, Nanjing Agricultural University;
School of Finance & Investment, Guangdong University of Finance
下载:  PDF (613KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于中国家庭金融调查数据和城市层面的数字经济发展指数,本文探讨了数字经济发展对家庭资产配置效率进而对居民财产性收入的影响。结果表明:数字经济发展显著促进了居民财产性收入的增加,并主要通过提升家庭的资产配置效率而实现;且这一结论在替换核心解释变量、进行工具变量回归和选择“宽带中国”试点作为准自然实验等的稳健性检验后仍然成立。机制分析显示,增加金融可得性、便利信息获取与缓解流动性约束是数字经济提升家庭资产配置效率、促进居民财产性收入的重要渠道。异质性检验显示,数字经济发展对于中年组家庭、城镇地区家庭以及高净值家庭的资产配置效率提升效应更高。最后,数字经济的积极影响对于不同风险偏好的个体而言具有非对称性,对高债务规模家庭的资产配置效率提升更明显。本文是对数字经济发展微观效应的拓展探讨,既说明了发展数字经济的重要性,同时也为优化家庭资产配置、提高居民财产性收入提供合理化建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周利
吴雨
易行健
关键词:  数字经济  资产配置效率  居民财产性收入    
Summary:  Under the impact of a new wave of industrial transformation and technological revolution, the value of data is rapidly accelerating, and digital technology is integrated with the real economy, promoting the development of the digital economy. Meanwhile, household asset allocation efficiency affects property income, wealth accumulation, and social wealth distribution, which in turn impacts household welfare. Therefore, exploring how the development of the digital economy enhances household asset allocation efficiency and promotes property income is of significant practical importance.
Taking advantage of the unique attributes of the digital economy, this study measures the digital economy index for 262 prefecture-level cities in 2012, 2014, 2016, and 2018, and matches household micro-survey data with city-level data to explore the relationship and mechanism between digital economy development, household asset allocation efficiency, and property income using econometric models. The results show that digital economy development significantly increases property income by improving household asset allocation efficiency. Specifically, the main channels include enhancing financial accessibility, facilitating information access, and alleviating liquidity constraints. Meanwhile, the impact of digital economy development on property income exhibits obvious asymmetric effects. These findings still hold up after robustness tests such as replacing the core explanatory variables, conducting instrumental variable regression, and selecting the “Broadband China” strategy as a quasi-natural experiment.
The contributions of this paper are as follows: First, while existing literature on the digital economy often focuses on macro-level impacts such as high-quality development, total factor productivity, and economic growth (Zhao et al., 2020; Liu & Ma, 2020; Qian et al., 2020), few studies explore the relationship between digital economy development and household property income from a macro-micro perspective. This paper offers a more detailed analysis by examining the effects of digital economy development on household property income from city and household levels. Second, this study provides an examination of the channels through which the digital economy influences household property income by evaluating its impact on household asset allocation efficiency. It identifies that increased financial accessibility, improved information availability, and reduced liquidity constraints are the underlying mechanisms through which digital economy development enhances asset allocation efficiency, thereby extending and deepening existing literature. Third, by employing the “Broadband China” strategy as a quasi-natural experiment, this paper addresses endogeneity issues and improves the causal identification between digital economy development and household property income, thereby enhancing the robustness of the above findings.
The conclusions of this study have several policy implications. First, given that the digital economy can enhance household asset allocation efficiency and thereby boost property income, policymakers should advance financial technology innovations and improve financial products and services, particularly for low-and-middle-income households, to reduce wealth inequality and achieve common prosperity. Additionally, there should be more investment in internet infrastructure and Digital China technology to maximize household welfare. Second, the promotion effect of the development of the digital economy on the efficiency of asset allocation in rural areas and low-income households needs to be deepened, which requires relevant departments to implement a precise, dynamic, and differentiated digital technology strategy. Third, the government departments should also address how to improve household human capital, so that households can better share the benefits of the digital economy. Finally, the asymmetric effects of the digital economy on asset allocation efficiency indicate that financial institutions should consider individual risk preferences. When providing additional credit support to households with a certain amount of debt, it is necessary to strengthen the screening of investors to ensure the optimal allocation of society credit resources.
Keywords:  Digital Economy    Asset Allocation Efficiency    Household Property Income
JEL分类号:  D13   G11  
基金资助: * 感谢国家社会科学基金项目(22VRC002)、 国家自然科学基金面上项目(72273036)和广东省自然科学基金面上项目(2022A1515010998)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  吴 雨,经济学博士,教授,南京农业大学金融学院,E-mail:wuyu@chfs.cn.   
作者简介:  周 利,经济学博士,副教授,广东外语外贸大学金融学院,E-mail:zlsdtll@163.com.
易行健,经济学博士,教授,广东金融学院金融与投资学院,E-mail:yxjby@163.com.
引用本文:    
周利, 吴雨, 易行健. 数字经济发展、资产配置效率与居民财产性收入——来自中国家庭微观调查数据的证据[J]. 金融研究, 2024, 528(6): 151-168.
ZHOU Li, WU Yu, YI Xingjian. Digital Economy, Asset Allocation Efficiency and Household Property Income ——Evidence from China Household Finance Survey. Journal of Financial Research, 2024, 528(6): 151-168.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V528/I6/151
[1] 柏培文和张云,2021,《数字经济、人口红利下降与中低技能劳动者权益》,《经济研究》第5期,第91~108页。
[2] 陈刚,2015,《金融多样性与财产性收入——基于增长和分配双重视角的审视》,《当代财经》第3期,第44~55页。
[3] 陈建东、晋盛武、侯文轩和陈焱,2009,《我国城镇居民财产性收入的研究》,《财贸经济》第1期,第65~70页。
[4] 陈洋林、张学勇和李波,2019,《家庭加杠杆的资产配置效应研究》,《中央财经大学学报》第3期,第23~34页。
[5] 迟巍和蔡许许,2012,《城市居民财产性收入与贫富差距的实证分析》,《数量经济技术经济研究》第2期,第100~112页。
[6] 樊纲和姚枝仲,2002,《中国财产性生产要素总量与结构的分析》,《经济研究》第11期,第 12~19+92页。
[7] 方福前、田鸽和张勋,2023,《数字基础设施与代际收入向上流动性——基于“宽带中国”战略的准自然实验》,《经济研究》第5期,第79~97页。
[8] 甘犁、赵乃宝和孙永智,2018,《收入不平等、流动性约束与中国家庭储蓄率》,《经济研究》第12期,第34~50页。
[9] 郭峰、王靖一、王芳、孔涛、张勋和程志云,2020,《测度中国数字普惠金融发展:指数编制与空间特征》,《经济学(季刊)》第4期,第1401~1418页。
[10] 黄群慧、余泳泽和张松林,2019,《互联网发展与制造业生产率提升:内在机制与中国经验》,《中国工业经济》第8期,第5~23页。
[11] 黄益平和黄卓,2018,《中国的数字金融发展:现在与未来》,《经济学(季刊)》第4期,第1489~1502页。
[12] 荆文君和孙宝文,2019,《数字经济促进经济高质量发展:一个理论分析框架》,《经济学家》第2期,第66~73页。
[13] 李继尊,2015,《关于互联网金融的思考》,《管理世界》第7期,第1~7+16页。
[14] 李晓、吴雨和李洁,2021,《数字金融发展与家庭商业保险参与》,《统计研究》第5期,第29~41页。
[15] 梁平汉和江鸿泽,2020,《金融可得性与互联网金融风险防范——基于网络传销案件的实证分析》,《中国工业经济》第4期,第116~134页。
[16] 刘传明和马青山,2020,《网络基础设施建设对全要素生产率增长的影响研究——基于“宽带中国”试点政策的准自然实验》,《中国人口科学》第3期,第75~88+127~128页。
[17] 刘宏、侯本宇方和陈斌开,2021,《城镇化进程中财产性收入冲击对家庭消费的影响——来自房屋拆迁的准自然实验》,《财贸经济》第9期,第112~128页。
[18] 刘江会和唐东波,2010,《财产性收入差距、市场化程度与经济增长的关系——基于城乡间的比较分析》,《数量经济技术经济研究》第4期,第20~33页。
[19] 刘军、杨渊鋆和张三峰,2020,《中国数字经济测度与驱动因素研究》,《上海经济研究》第6期,第81~96页。
[20] 路晓蒙、李阳、甘犁和王香,2017,《中国家庭金融投资组合的风险——过于保守还是过于冒进?》,《管理世界》第12期,第92~108页。
[21] 吕学梁和吴卫星,2017,《借贷约束对于中国家庭投资组合影响的实证分析》,《科学决策》第6期,第55~76页。
[22] 宁光杰、雒蕾和齐伟,2016,《我国转型期居民财产性收入不平等成因分析》,《经济研究》第4期,第116~128+187页。
[23] 宁光杰,2014,《居民财产性收入差距:能力差异还是制度阻碍?——来自中国家庭金融调查的证据》,《经济研究》第S1期,第102~115页。
[24] 齐明珠和张成功,2019,《老龄化背景下年龄对家庭金融资产配置效率的影响》,《人口与经济》第1期,第54~66页。
[25] 钱海章、陶云清、曹松威和曹雨阳,2020,《中国数字金融发展与经济增长的理论与实证》,《数量经济技术经济研究》第6期,第26~46页。
[26] 田鸽和张勋,2022,《数字经济、非农就业与社会分工》,《管理世界》第5期,第72~84页。
[27] 吴雨、李成顺、李晓和弋代春,2020,《数字金融发展对传统私人借贷市场的影响及机制研究》,《管理世界》第10期,第53~64+138+65页。
[28] 吴雨、李晓、李洁和周利,2021,《数字金融发展与家庭金融资产组合有效性》,《管理世界》第7期,第92~104+7页。
[29] 尹志超、宋全云和吴雨,2014,《金融知识、投资经验与家庭资产选择》,《经济研究》第4期,第62~75页。
[30] 张国林和何丽,2021,《土地确权与农民财产性收入增长》,《改革》第3期,第121~133页。
[31] 张勋、万广华、张佳佳和何宗樾,2019,《数字经济、普惠金融与包容性增长》,《经济研究》第8期,第71~86页。
[32] 赵涛、张智和梁上坤,2020,《数字经济、创业活跃度与高质量发展——来自中国城市的经验证据》,《管理世界》第10期,第65~76页。
[33] 周弘、张成思和何启志,2018,《中国居民资产配置效率的门限效应研究:金融约束视角》,《金融研究》第10期,第55~71页。
[34] Fuster, A., M. Plosser, and P. Schnabl, et al. 2019. “The Role of Technology in Mortgage Lending”, The Review of Financial Studies, 2019, 32(5): 1854~1899.
[35] Grinblatt, M., M. Keloharju, and J. Linnainmaa. 2011. “IQ and Stock Market Participation”, The Journal of Finance, 66(6): 2121~2164.
[36] Guo, C., X. Wang and G.Yuan. 2022.“Digital Finance and The Efficiency of Household Investment Portfolios”, Emerging Markets Finance and Trade, 58(10): 2895~2909.
[37] Haddad, C. and L.Hornuf. 2019. “The Emergence of the Global Fintech Market: Economic and Technological Determinants”, Small Business Economics, 53(1): 81~105.
[38] Li, R. and Y. Qian. 2021. “How Does Entrepreneurship Influence the Efficiency of Household Portfolios?”, The European Journal of Finance, 27(13): 1282~1302.
[39] Lu, X., Y. Lai and Y. Zhang. 2023. “Digital Financial Inclusion and Investment Diversification: Evidence From China”, Accounting & Finance, 63: 2781~2799.
[40] Nunn, N. and N. Qian. 2014. “US Food Did and Civil Conflict”, American Economic Review, 104(6): 1630~66.
[41] Pelizzon, L. and G.Weber. 2008. “Are Household Portfolios Efficient? An Analysis Conditional on Housing”, Journal of Financial and Quantitative Analysis, 43(2): 401~431.
[42] Philip, V. and V. K. Suman and V. G. Menon, et al. 2017. “A Review on Latest Internet of Things Based Healthcare Applications”, International Journal of Computer Science and Information Security, 15(1): 248~254.
[1] 刘珺, 唐建伟, 周边, 鄂永健, 王运良. 数字经济如何影响中国通货膨胀?——基于作用机理和动态特征的实证分析[J]. 金融研究, 2023, 513(3): 1-19.
[2] 方明月, 聂辉华, 阮睿, 沈昕毅. 企业数字化转型与经济政策不确定性感知[J]. 金融研究, 2023, 512(2): 21-39.
[3] 田子方. 集体主义与居民家庭消费——来自中国的经验发现[J]. 金融研究, 2020, 479(5): 132-150.
[4] 周弘, 张成思, 何启志. 中国居民资产配置效率的门限效应研究:金融约束视角[J]. 金融研究, 2018, 460(10): 55-71.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1