Please wait a minute...
金融研究  2022, Vol. 504 Issue (6): 55-73    
  本期目录 | 过刊浏览 | 高级检索 |
泰达币(USDT)与人民币汇率相关性研究
中国人民银行数字货币研究所课题组
中国人民银行数字货币研究所,北京 100007
The Nexus between the USDT Stablecoin and the RMB Exchange Rate
Research Group of the Digital Currency Institute
The Digital Currency Institute, the People's Bank of China
下载:  PDF (827KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 全球规模最大的稳定币“泰达”币(USDT)在最近的司法调查中被发现涉嫌发行欺诈,受到全球高度关注。为考察USDT场外交易与人民币外汇交易之间的联系,本文首先构建了一个刻画人民币-USDT场外交易-比特币三角交易机制的理论模型,分析推导USDT人民币价格与人民币汇率之间的关系;然后使用独有的2019年10月至2020年10月USDT中国场外市场日度交易数据,实证检验了USDT(人民币)收益率、波动率与人民币汇率收益率、波动率之间的相关性;最后将实证结果与欧元、日元进行了国际比较。本文发现:(1)USDT的人民币价格收益率与人民币对美元汇率收益率负相关、波动率正相关,而USDT的欧元、日元价格收益率与它们对美元汇率收益率正相关、波动率负相关;(2)USDT的人民币、欧元、日元价格的波动率指标分别是各自汇率波动率的先行指标。本文研究结果表明,USDT稳定币与人民币外汇市场的联系是因为前者所具有的外汇黑市机制,同时稳定币作为桥梁,建立了加密资产市场与人民币外汇市场的联系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
中国人民银行数字货币研究所课题组
关键词:  稳定币  人民币汇率  相关性    
Summary:  USDT is a dominant stablecoin pegging the US dollar at parity and is issued entirely against reserves mainly deposited at banks. More than two thirds of global Bitcoin transactions use USDT, which has become the infrastructure and primary medium of exchange for the crypto-assets market. The core mechanism to stabilize the intrinsic value of USDT is having the necessary reserves in place to ensure that the token is readily redeemable at parity with the US dollar. Tether, a tech company domiciled in the US, promises to meet the market demand for redeeming USDT against USD at parity at any time. However, on February 24, 2021, Tether and affiliates (Bitfinex) settled a judicial investigation with the New York attorney general's office, paying a \$ 18.5 million fine to end a judicial probe into the alleged fraudulent issuance of the stablecoin USDT, foreshadowing that USDT could have a serious liquidity impact on the \$ 1.4 trillion crypto-assets market as reported by The Economist.
In China, using USDT has become a way to bypass government regulations, which channels its risks to the foreign exchange (FX) market through the nexus between USDT and the RMB exchange rate. Nowadays, most USDT trading activities in China are conducted through OTC online trade, which provides platforms priced in RMB for buyers to bid and sellers to ask. Some recent court verdicts have shown that Bitcoin and USDT share a decentralized, borderless and hard-to-trace nature, so both of these cryptocurrencies are used for cross-border fund transfers, forming a triangular RMB-USDT-Bitcoin trading mechanism.
Accordingly, the theoretical and empirical work of this paper is twofold. First, this paper establishes a theoretical model for the triangular trading mechanism. A salient feature of USDT is its ability to act as a bridge between a fiat currency and crypto-assets priced in USD, which could be seen as a de facto black market for USD. This model predicts the inherent correlations between the price of USDT and official exchange rates, such as of CNY, which can deepen the theoretical framework for stablecoin and further reveal the financial risks brought by. An empirical model for USDT price return and volatility correlated with those of CNY is then developed to test the hypothesis based on the theoretical model.
This paper is the first to find that (a) USDT (in RMB) return is negatively correlated with CNY return, and USDT (in RMB) volatility is positively correlated with CNY volatility; and (b) USDT (in RMB) volatility is a leading indicator of CNY volatility. Moreover, the results of similar empirical models show that the correlations between EUR and JPY return/volatility and USDT (in EUR and JPY) return/volatility are in sharp contrast to the correlations between CNY and USDT (in RMB). To narrow the explanatory gap of these empirical findings, the negative correlation between USDT (in RMB) and CNY can be explained by our theoretical model, which shows that increasing the probability of successful AML/CFT monitoring and capital outflow control would lower the equilibrium ratio of the USDT price to the official exchange rate, with the former price decreasing (RMB appreciation) and the latter price increasing (RMB devaluation) in tandem.
This paper also contributes to the theoretical framework for FX black markets in the digital era, as it finds that a weak currency exhibits different correlational relationships with a stablecoin (USDT) compared to strong currencies, which would present an insidious risk to the stability of the weak currency. Hence, it can be inferred that stablecoins should be under adequate and appropriate regulation, and that global stablecoins should not be rolled out before there is a consistent and holistic framework for regulation on this issue. We advocate that because of the possibility of using a stablecoin pegged to an international or domestic currency on FX black markets, the measures surrounding crypto-assets and stablecoins implemented by the government should be upheld.
Keywords:  Stablecoins    Foreign Exchange Rates    Correlation
JEL分类号:  G29 F31 G19  
基金资助: * 本文系2019年度中国人民银行重点基础性研究课题“Libra等数字稳定币运作机理和潜在影响研究”析出成果。感谢北京师范大学经济与工商管理学院贺力平教授为本文提出的建议以及匿名审稿人的宝贵建议。文中观点仅代表作者个人学术研究观点,不代表所在供职单位意见。文责自负。
作者简介:  穆长春,中国人民银行数字货币研究所。课题组成员:吕远、赵鹞(执笔)、黄佳琳、李志冰(对外经济贸易大学金融学院)、范言慧(对外经济贸易大学金融学院)。E-mail:lonemath_001@163.com.
引用本文:    
中国人民银行数字货币研究所课题组. 泰达币(USDT)与人民币汇率相关性研究[J]. 金融研究, 2022, 504(6): 55-73.
Research Group of the Digital Currency Institute. The Nexus between the USDT Stablecoin and the RMB Exchange Rate. Journal of Financial Research, 2022, 504(6): 55-73.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2022/V504/I6/55
[1] 傅强、梁巧和袁晨,2013,《中国汇率收益率及波动的周内效应实证研究》,《重庆大学学报(社会科学版)》第19期,第57~63页。
[2] 徐子福和洪昊,2006,《外汇管制环境下外资流入管理政策效率研究》,《金融研究》第6期,第118~123页。
[3] 王喜军和林贵军,2008,《波动率区制依赖性特征:中国官方外汇市场和外汇黑市的结构分析(1981—2006)》,《金融研究》第11期,第76~86页。
[4] 夏南新,2007,《中国官方汇率与黑市汇率的结构平稳性和联动性研究》,《数量经济技术经济研究》第7期,第89~96页。
[5] 夏南新,2009,《中国官方汇率与黑市汇率的杠杆效应和双长记忆性研究》,《数量经济技术经济研究》第9期,第43~51页。
[6] 袁磊和耿新,2020,《私人数字货币与资本流出——以比特币为例的研究》,《国际金融研究》第6期,第14~24页。
[7] Baur, Dirk G., and Lai T. Hoang. 2020. “A Crypto Safe Haven against Bitcoin”, Finance Research Letters, in press.
[8] Berentsen, Aleksander, and Fabian Schär. 2019. “Stablecoins: The Quest for a Low-Volatility Cryptocurrency”, In book: The Economics of Fintech and Digital Currencies Publisher: CEPR Press.
[9] BIS. 2019. “Investigating the Impact of Global Stablecoins.”
[10] Botman, Dennis, Irineu de Carvalho Filho, and Waikei Lam. 2013. “The Curious Case of the Yen as a Safe Haven Currency: A Forensic Analysis”, IMF Working Paper No. 13/228.
[11] Bullmann, Dirk, Jonas Klemm, and Andrea Pinna. 2019. “In Search for Stability in Crypto-assets: Are Stablecoins the Solution?”, ECB Occasional Paper, (230).
[12] Da, Z., Engelberg, J., and Gao, P. 2011. “In Search of Attention”, The Journal of Finance, 66(5):1461~1499.
[13] Dornbusch, Rudiger, Daniel Valente Dantas, Clarice Pechman, Roberto de Rezende Rocha, and Demetrio Simões. 1983. “The Black Market for Dollars in Brazil”, The Quarterly Journal of Economics, 98(1):35~40.
[14] Eichengreen, Barry. 2019. “From Commodity to Fiat and Now to Crypto: What Does History Tell Us?,” Technical Report, National Bureau of Economic Research.
[15] Foley, Sean, Jonathan R. Karlsen, and Tālis J. Putniņš. 2019. “Sex, Drugs, and Bitcoin: How Much Illegal Activity is Financed through Cryptocurrencies?”, The Review of Financial Studies, 32(5):1798~1853.
[16] Ji, Q., Bouri, E., Lau, C., and Roubaud, D. 2019a. “Dynamic Connectedness and Integration in Cryptocurrency Markets”, International Review of Financial Analysis, 63:257~272.
[17] Ji, Q., Bouri, E., Roubaud, D., and Kristoufek, L. 2019b. “Information Interdependence among Energy, Cryptocurrency and Major Commodity Markets”, Energy Economics, 81:1042~1055.
[18] Kanas, Angelos, and Georgios P. Kouretas. 2001a. “Black and Official Exchange Rate Volatility and Foreign Exchange Controls: Evidence from Greece”, International Journal of Finance and Economics, 6:13~25.
[19] Kanas, Angelos, and Georgios P. Kouretas. 2001b. “Volatility Spillovers Between the Black Market and Official Market for Foreign Currency in Greece”, Journal of Financial Research, XXIV(3):443~461.
[20] Kouretas, Georgios P., and Leonidas P. Zarangas. 1998. “A Cointegration Analysis of the Official and Parallel Foreign Exchange Markets for Dollars in Greece”, International Journal of Finance and Economics, 3:261~276.
[21] Kroeger, Alexander, and Asani Sarkar. 2017. “Law of One Bitcoin Price?”, Federal Reserve Bank of Philadelphia.
[22] Kumar, A., and Anandarao, S. 2019. “Volatility Spillover in Crypto-Currency Markets: Some Evidences from Garch and Wavelet Analysis”, Physica A: Statistical Mechanics and its Applications, 524:448~458.
[23] Lyons, Richard K., and Viswanath-Natraj, Ganesh. 2020. “What Keeps Stablecoins Stable?”, NBER Working Paper 27136.
[24] Makarov, I., and Schoar, A. 2020. “Trading and Arbitrage in Cryptocurrency Markets”, Journal of Financial Economics, 135(2):293~319.
[25] Omane-Adjepong, M., and Alagidede, I. 2019. “Multiresolution Analysis and Spillovers of Major Cryptocurrency Markets”, Research in International Business and Finance, 49:191~206.
[26] Pieters, Gina, and Sofia Vivanco. 2015. “Bitcoin Arbitrage and Unofficial Exchange Rates”, http://www.ginapieters.com/uploads/1/0/2/8/10288430/bitcoin.pdf
[27] Pitt, Mark M. 1984. “Smuggling and the Black Market for Foreign Exchange”, Journal of International Economics, 16:243~257.
[28] Polasik, M., Piotrowska, A. I., Wisniewski, T. P., Kotkowski, R., and Lightfoot, G. 2015. “Price Fluctuations and the Use of Bitcoin: An Empirical Inquiry”, International Journal of Electronic Commerce, 20(1):9~49.
[29] Shynkevich, Andrei. 2021. “Bitcoin Arbitrage”, Finance Research Letters, 40:1~7.
[30] Tara,Lyer,2022, Cryptic Connections. Global Financial Stability Notes No. 2022/001, IMF.
[31] Yi, S., Xu, Z., and Wang, G.-J. 2018. “Volatility Connectedness in the Cryptocurrency Market: Is Bitcoin a Dominant Cryptocurrency?”, International Review of Financial Analysis, 60:98~114.
[1] 丁剑平, 胡昊, 叶伟. 在岸与离岸人民币汇率动态研究——基于美元因素和套利因素的视角[J]. 金融研究, 2020, 480(6): 78-95.
[2] 陈雨露. 当前全球中央银行研究的若干重点问题[J]. 金融研究, 2020, 476(2): 1-14.
[3] 郑振龙, 黄珊珊, 郭博洋. 外汇期权信息含量与在岸离岸市场效率[J]. 金融研究, 2019, 472(10): 21-39.
[4] 李科, 陆蓉, 夏翊, 胡凡. 基金经理更换、股票联动与股票价格[J]. 金融研究, 2019, 463(1): 188-206.
[5] 张小茜, 党春辉. 基于抵押物处置风险的不良贷款证券化研究——以某国有商业银行的个人住房贷款资产池为例[J]. 金融研究, 2018, 458(8): 102-119.
[6] 管涛. 货币供应与汇率:中国“货币超发”必然导致人民币贬值吗?[J]. 金融研究, 2018, 462(12): 19-36.
[7] 刘啟仁, 黄建忠. 人民币汇率变动与出口企业研发[J]. 金融研究, 2017, 446(8): 19-34.
[8] 郑振龙, 王磊. 汇率相关性预测的比较研究[J]. 金融研究, 2017, 443(5): 18-31.
[9] 卢新生, 孙欣欣. 中央银行政策沟通的市场效应:基于人民币汇率的实证研究[J]. 金融研究, 2017, 439(1): 22-34.
[10] 曹伟, 言方荣, 鲍曙明. 人民币汇率变动、邻国效应与双边贸易——基于中国与“一带一路”沿线国家空间面板模型的实证研究[J]. 金融研究, 2016, 435(9): 50-66.
[11] 耿志祥, 孙祁祥. 金融危机和自然灾害对保险股票市场的影响与溢出效应检验[J]. 金融研究, 2016, 431(5): 65-81.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1