Please wait a minute...
金融研究  2019, Vol. 464 Issue (2): 40-58    
  本期目录 | 过刊浏览 | 高级检索 |
中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化
李政, 梁琪, 方意
天津财经大学金融学院,天津 300222;
南开大学经济学院,天津 300071;
中央财经大学金融学院,北京 100081
Monitoring and Forewarning of Systemic Risk Spillover in China's Financial Sector Based on Modified CoES Indicators
LI Zheng, LIANG Qi, FANG Yi
School of Finance, Tianjin University of Finance and Economics;
School of Economics, Nankai University;
School of Finance, Central University of Finance and Economics
下载:  PDF (1944KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了对我国金融部门间的系统性风险溢出进行实时监测和有效预警,本文基于Adrian and Brunnermeier (2016) 的CoES指标构想,在左尾视角的基础上进一步引入右尾视角,构建下行和上行ΔCoES分别作为系统性风险的同期度量指标和前瞻预警指标,并提出了更为有效合理且同时适用于下行和上行ΔCoES的计算方法。本文一方面采用下行和上行ΔCoES对我国银行、证券、保险三个金融部门间的系统性风险溢出进行监测预警研究,另一方面还基于我国的经验数据检验上行和下行ΔCoES的性质。研究结果显示,我国金融部门间具有显著的系统性风险溢出效应,且三个部门间的风险溢出存在非对称性,银行部门是系统性风险的主要发送者,证券部门是系统性风险的主要接收者;三个部门两两间的风险溢出水平表现出明显的协同性和周期性,且上行的风险溢出水平高于下行。同时,基于我国的经验数据发现,上行ΔCoES对下行ΔCoES具有显著的先导性、前瞻性,上行ΔCoES可以作为系统性风险的前瞻预警指标。此外,下行ΔCoES能够引领ΔCoVaR和基于MES估计方法计算的短期ΔCoES指标,表明本文构建的下行ΔCoES实时性更强,更适合作为系统性风险的实时监测指标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李政
梁琪
方意
关键词:  系统性风险  下行和上行ΔCoES  跨部门风险溢出  前瞻性    
Summary:  China's comprehensive financial reforms were accompanied by the rapid integration of financial institutions including banks, securities, and insurance companies and the continual introduction of cross-businesses and cross-products such that mixed financial operations have become a trend. This not only exacerbates the cross-sector and cross-market spread of risk, but increases the possible cross-contagion of financial risk. When a crisis occurs in one industry, the cross-contagion and resonance of risk may further induce systemic financial risk, threatening China's financial security. At present, preventing and reducing systemic risk and safeguarding financial security are the focus of the whole society. However, it is not easy to prevent systemic risk, and the accurate measurement of risk is a prerequisite for scientific prevention. Only through real-time monitoring and effective forewarning can we hold the bottom line for systemic risk and national financial security. Research on monitoring and early warning signs of systemic risk spillover among China's banking, securities, and insurance sectors will not only contribute to the prevention of cross-sector risk, but also help to prevent systemic financial risk and defend the security of the entire financial system.
   To carry out real-time monitoring and effective early forewarning of systemic risk spillover in China's financial sector based on the CoES indicator (Adrian and Brunnermeier, 2016) and the traditional left-tail perspective, we also include the right-tail perspective. We subsequently build upper ΔCoES and lower ΔCoES measures as real-time monitoring and forward-looking warning indicators, respectively, of systemic risk under a unified CoES framework. We also take advantage of CoVaR and LRMES to propose a more effective and accurate calculation method for these indicators. We select the banking, securities, and insurance industry index in the Shenwan second-class industry index to proxy for these three financial sectors. The modified CoES indicators are used to monitor and predict the systemic risk spillover among China's financial sectors. Based on the data, this paper tests the forward-looking and early warning characteristics of the upper ΔCoES and the real-time characteristics of the lower ΔCoES.
   The results suggest that there are significant and asymmetric systemic risk spillover effects among the three financial sectors. While the banking sector is the main sender of systemic risk, the securities sector is the main recipient. Risk spillover among China's financial sectors shows significant co-movement and cyclicality, and the upside risk spillover is higher than that of the downside. At the same time, the upper ΔCoES is significantly ahead of the lower ΔCoES, and can therefore be used as a forward-looking warning indicator of systemic risk. In addition, the lower ΔCoES can lead the ΔCoVaR, and the short-term ΔCoES calculated based on the MES estimation method indicates that the lower ΔCoES is more suitable as a real-time indicator of systemic risk.
   There are two main policy implications of these results. In the cross-sectional dimension, according to the role and status of the different financial sectors in systemic risk transmission, the supervisory authority should select regulatory objectives and policy tools to carry out differentiated monitoring and prevention. As the banking sector is the main sender of systemic risk, the focus of China's systemic risk prevention should be the banking sector. Reducing risk spillover from the banking sector is the key to preventing and defusing systemic financial risk and maintaining the security and stability of the financial system. As the securities sector is the main recipient of systemic risk, we should pay attention to improving this sector's ability to resist risk and reducing its systemic vulnerability. In the time dimension, the supervisory authority should not only monitor the real-time dynamics of the systemic risk spillover, but also build effective early-warning indicators of systemic risk and improve the mechanisms of risk monitoring, early warning, and early intervention. The supervisory authority can use the lower and upper ΔCoES constructed in this paper as real-time monitoring and forward-looking warning indicators to further improve the systemic risk monitoring and early warning system in China.
Keywords:  Systemic Risk    Lower and Upper ΔCoES    Cross-sector Risk Spillover    Forward-looking
JEL分类号:  G20   G17   C58  
基金资助: 本文感谢国家自科基金项目(71703111;71771163;71503290)、国家社科基金项目(14ZDB124;17CJY057)、天津市“131”创新型人才团队“金融风险创新团队”、天津市高等学校创新团队培养计划“中国经济转型升级与系统性金融风险防范”的资助。感谢匿名审稿人的宝贵意见。文责自负。
作者简介:  李 政,经济学博士,副教授,天津财经大学金融学院,天津财经大学大数据统计研究中心,E-mail:lizheng@tjufe.edu.cn.
梁 琪(通讯作者),经济学博士,教授,南开大学经济学院,E-mail:liangqi@nankai.edu.cn.
方 意,经济学博士,副教授,中央财经大学金融学院,E-mail:fangyi@cufe.edu.cn.
引用本文:    
李政, 梁琪, 方意. 中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化[J]. 金融研究, 2019, 464(2): 40-58.
LI Zheng, LIANG Qi, FANG Yi. Monitoring and Forewarning of Systemic Risk Spillover in China's Financial Sector Based on Modified CoES Indicators. Journal of Financial Research, 2019, 464(2): 40-58.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V464/I2/40
[1]白雪梅和石大龙,2014,《中国金融体系的系统性风险度量》,《国际金融研究》第6期,第75~85页。
[2]卜林和李政,2015,《我国上市金融机构系统性风险溢出研究——基于CoVaR和MES的比较分析》,《当代财经》第6期,第55~65页。
[3]陈建青、王擎和许韶辉,2015,《金融行业间的系统性金融风险溢出效应研究》,《数量经济技术经济研究》第9期,第89~100页。
[4]范小云、王道平和方意,2011,《我国金融机构的系统性风险贡献测度与监管——基于边际风险贡献与杠杆率的研究》,《南开经济研究》第4期,第3~20页。
[5]方意、赵胜民和王道平,2012,《我国金融机构系统性风险测度——基于DCC-GARCH模型的研究》,《金融监管研究》第11期,第26~42页。
[6]高国华和潘英丽,2011,《银行系统性风险度量——基于动态CoVaR方法的分析》,《上海交通大学学报》第12期,第1753~1759页。
[7]李志辉和樊莉,2011,《中国商业银行系统性风险溢价实证研究》,《当代经济科学》第6期,第13~20页。
[8]梁琪、李政和郝项超,2013,《我国系统重要性金融机构的识别与监管——基于系统性风险指数SRISK方法的分析》,《金融研究》第9期,第56~70页。
[9]刘吕科、张定胜和邹恒甫,2012,《金融系统性风险衡量研究最新进展述评》,《金融研究》第11期,第31~43页。
[10]肖璞、刘轶和杨苏梅,2012,《相互关联性、风险溢出与系统重要性银行识别》,《金融研究》第12期,第96~106页。
[11]严伟祥、张维和牛华伟,2017,《金融风险动态相关与风险溢出异质性研究》,《财贸经济》第10期,第67~81页。
[12]杨子晖、陈雨恬和谢锐楷,2018,《我国金融机构系统性金融风险度量与跨部门风险溢出效应研究》,《金融研究》第10期,第19~37页。
[13]张冰洁、汪寿阳、魏云捷和赵雪婷,2018,《基于CoES模型的我国金融系统性风险度量》,《系统工程理论与实践》第3期,第565~575页。
[14]周天芸、杨子晖和余洁宜,2014,《机构关联、风险溢出与中国金融系统性风险》,《统计研究》第11期,第43~49页。
[15]Acharya, V.V., L.H. Pedersen, T. Philippon, and M. Richardson. 2017. “Measuring Systemic Risk” Review of Financial Studies, 30(1):2~47.
[16]Acharya, V.V., R.F. Engle, and M. Richardson. 2012. “Capital Shortfall: A New Approach to Ranking and Regulating Systemic Risks” American Economic Review, 102(3):59~64.
[17]Adrian, T., and M.K. Brunnermeier. 2016. “CoVaR” American Economic Review, 106(7):1705~1741.
[18]Benoit, S., J. Colliard, C. Hurlin, and C. Pérignon. 2017. “Where the Risks Lie: A Survey On Systemic Risk” Review of Finance, 21(1):109~152.
[19]Bhattacharya, S., C.A. Goodhart, D.P. Tsomocos, and A.P. Vardoulakis. 2015. “A Reconsideration of Minsky's Financial Instability Hypothesis” Journal of Money, Credit and Banking, 47(5):931~973.
[20]Brownlees, C., and R.F. Engle. 2017. “SRISK: A Conditional Capital Shortfall Measure of Systemic Risk” Review of Financial Studies, 30(1):48~79.
[21]Brunnermeier, M.K., and Y. Sannikov. 2014. “A Macroeconomic Model with a Financial Sector” American Economic Review, 104(2):379~421.
[22]Danielsson, J., M. Valenzuela, and I. Zer, 2016. “Learning From History: Volatility and Financial Crises” SRC Discussion Paper, No. 57.
[23]Gauthier, C.L., C. Graham, and L. Ying. 2004. “Financial Conditions Indexes for Canada” Bank of Canada Working Paper, No. 22.
[24]Girardi, G., and A. Tolga Ergün. 2013. “Systemic Risk Measurement: Multivariate GARCH Estimation of CoVaR” Journal of Banking & Finance, 37(8):3169~3180.
[1] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[2] 何青, 钱宗鑫, 刘伟. 中国系统性金融风险的度量——基于实体经济的视角[J]. 金融研究, 2018, 454(4): 53-70.
[3] 黄卓, 邱晗, 沈艳, 童晨. 测量中国的金融不确定性——基于大数据的方法[J]. 金融研究, 2018, 461(11): 30-46.
[4] 李志辉, 李源, 李政. 中国银行业系统性风险监测研究——基于SCCA技术的实现与优化[J]. 金融研究, 2016, 429(3): 92-106.
[5] 苟文均, 袁鹰, 漆鑫. 债务杠杆与系统性风险传染机制—基于CCA模型的分析[J]. 金融研究, 2016, 429(3): 74-91.
[6] 刘圣尧, 李怡宗, 杨云红. 中国股市的崩盘系统性风险与投资者行为偏好[J]. 金融研究, 2016, 428(2): 55-70.
[7] 王道平. 利率市场化、存款保险制度与系统性银行危机防范[J]. 金融研究, 2016, 427(1): 50-65.
[8] 黄志凌. 问题银行的判断与破产早期干预机制[J]. 金融研究, 2015, 421(7): 45-59.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1