Please wait a minute...
金融研究  2020, Vol. 485 Issue (11): 40-57    
  本期目录 | 过刊浏览 | 高级检索 |
货币传导异质性与实体经济流动性配置的“马太效应”
杨继生, 向镜洁
华中科技大学经济学院,湖北武汉 430074;
华中师范大学经济与工商管理学院,湖北武汉 430079
Monetary Transmission Heterogeneity and the “Matthew Effect” of Liquidity Allocation in the Real Economy
YANG Jisheng, XIANG Jingjie
School of Economics, Huazhong University of Science and Technology;
School of Economics and Business Administration, Central China Normal University
下载:  PDF (2178KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 货币政策支持实体经济高质量发展的关键在于疏通货币政策传导机制,引导流动性进入重点领域和薄弱环节,因此货币资金的配置效率至关重要。本文基于交互效应面板分位数回归,测度货币政策对实体企业流动性的异质性效应。研究发现:在样本期内,实体经济流动性配置陷入了资金越充裕的企业越易于获得融资,越易于获得融资的企业资金越充裕的窘境。这种流动性配置的“马太效应”具体表现为,货币政策对尾部企业的支持力度不及头部企业的一半;虚拟经济对尾部企业的“分流效应”高达头部企业的3倍,从而强化了流动性配置的失衡。因此,当前密集出台的一系列普惠政策有助于提升流动性配置效率,进一步完善调控模式的关键在于健全现代化金融体系,增强货币政策的靶向性和针对性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨继生
向镜洁
关键词:  货币政策  流动性错配  马太效应  实体经济  虚拟经济    
Summary:  The key for monetary policy to sustain real economic recovery is to improve the mechanism of monetary transmission to enhance liquidity in key areas and for weak links. Thus, allocative efficiency is more important than total supply. Typical symptoms of an inefficient transmission mechanism are the overallocation of resources to a virtual economy that squeezes out investment in the real economy or the coexistence of excess liquidity in the virtual economy and a liquidity shortage in the real economy. In addition, a liquidity imbalance in the real economy results in inefficiency. During the current transition from rapid growth to high-quality development, monetary policy is more targeted, so the heterogeneity of the micro transmission mechanisms of monetary policy are of concern to researchers.
This paper contributes to the literature by developing a quantile regression model with interactive effects based on data from Chinese A-share companies, and by conducting quantitative analysis on the effect of monetary policy and the virtual economy on firm financing, including internal and external financing. Empirical evidence suggests that during the 2009-2015 sample period, the economy faced a dilemma of “the richer the firm, the easier it is to get financed. The easier it is to get financed, the richer the firm,” also referred to as the “Matthew effect.” The Matthew effect was prominent in the effects of traditional monetary policy as the support given by releasing liquidity to poor firms did not reach half that of rich firms. At the same time, the virtual economy diverted liquidity in a way that strengthened the Matthew effect. The poorer the firm, the more likely it was to be negatively affected, with poor firms experiencing 3 times the diversion compared with rich firms.
During the sample period, the loose monetary policy when the interest rate and reserve ratio were lowered resulted in advantaged firms being more active, whereas disadvantaged firms were irrelevant with regulating intension. Specifically, the interest rate cut for external financing by head enterprises was 2.10 times that for tail enterprises, and the reserve ratio cut on external financing for head enterprises was 2.83 times that for tail enterprises. The traditional untargeted open market operation vehicles benefited head enterprises 6.87 times more than they benefited tail enterprises in terms of external financing.
In our study, the diversion to the virtual economy from the real economy was reflected in internal financing. The overheated stock market not only squeezed out business operations but also widened the gap between advantaged and disadvantaged firms. Similarly, firms in worse operating condition were more likely to be squeezed out by the housing boom. The diversion of the stock market on the liquidity of tail enterprises was 2.69 times that of head enterprises, and the diversion of the real estate market on tail enterprises was 2.30 times that of head enterprises.
According to the literature on the credit channel, rising housing prices are beneficial for external financing because mortgage values also increase. Our regression results are consistent with this view. However, the Matthew effect and increases in external financing have long been neglected. Our empirical findings suggest that during the 2009-2015 sample period, rising housing prices benefited the external financing of head enterprises 5.01 times more than that of tail enterprises. Therefore, efforts to stimulate the real estate market to fuel economic growth may be effective in the short run, but in the long run, stimulating the real estate market works against sustainable development.
Our empirical findings have the following profound implications for economic policy: (1) Rather than adopting strong stimulus policies that have an economy-wide effect, we should continue to move forward with structural reform and inject liquidity into key areas via the flexible manipulation of innovative and targeted instruments to create a proper monetary and financial environment for high-quality development. (2) The study of digital currency is of significant importance to gain more precise control over the currency flow between sectors. Therefore, big data technology is useful for customizing and adjusting dynamic strategies to strengthen areas of weakness. (3) As serving the real economy is the duty and purpose of the financial sector, China should guard against financial bubbles, be cautious of real economy hollowing arising from an overheated virtual economy, and guide liquidity back to the real economy. Benign interaction between the virtual and real economies is the long-term solution for high-quality development.
Keywords:  Monetary Policy    Liquidity Misallocation    Matthew Effect    Real Economy    Virtual Economy
JEL分类号:  E52   G21   G38  
基金资助: * 本文感谢国家自然科学基金面上项目(71773032)的资助。
通讯作者:  向镜洁,经济学博士,讲师,华中师范大学经济与工商管理学院,E-mail:xiangjingjie 1994@126.com.   
作者简介:  杨继生,经济学博士,教授,华中科技大学经济学院,E-mail:yangjisheng770@163.com.
引用本文:    
杨继生, 向镜洁. 货币传导异质性与实体经济流动性配置的“马太效应”[J]. 金融研究, 2020, 485(11): 40-57.
YANG Jisheng, XIANG Jingjie. Monetary Transmission Heterogeneity and the “Matthew Effect” of Liquidity Allocation in the Real Economy. Journal of Financial Research, 2020, 485(11): 40-57.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2020/V485/I11/40
[1] 蔡卫星、曾诚和胡志颖,2015,《企业集团、货币政策与现金持有》,《金融研究》第2期,第114~130页。
[2] 方明月,2011,《资产专用性、融资能力与企业并购——来自中国A股工业上市公司的经验证据》,《金融研究》第5期,第156~170页。
[3] 李广子和刘力,2009,《债务融资成本与民营信贷歧视》,《金融研究》第12期,第137~150页。
[4] 李欣泽和陈言,2018,《金融摩擦与资源错配研究新进展》,《经济学动态》第9期,第100~114页。
[5] 林滨、王弟海和陈诗一,2018,《企业效率异质性、金融摩擦的资源再分配机制与经济波动》,《金融研究》第8期,第17~32页。
[6] 罗来军、蒋承和王亚章,2016,《融资歧视、市场扭曲与利润迷失——兼议虚拟经济对实体经济的影响》,《经济研究》第4期,第74~88页。
[7] 饶品贵和张会丽,2015,《通货膨胀预期与企业现金持有行为》,《金融研究》第1期,第101~116页。
[8] 孙大超、王博和Wang Gang,2014,《银行业垄断是导致货币政策抑制中小企业的原因吗》,《金融研究》第6期,第99~114页。
[9] 杨继生,2019,《宏观经济渐进式变革的动态识别与评价》,《中国社会科学报》第4期。
[10] 喻坤、李治国、张晓蓉和徐剑刚,2014,《企业投资效率之谜:融资约束假说与货币政策冲击》,《经济研究》第5期,第106~120页。
[11] 余明桂、钟慧洁和范蕊,2019,《民营化、融资约束与企业创新——来自中国工业企业的证据》,《金融研究》第4期,第75~91页。
[12] 于泽、钱智俊、方庆和罗瑜,2017,《数量管制、流动性错配和企业高额现金持有——来自上市公司的证据》,《管理世界》第2期,第67~84页。
[13] 曾爱民、张纯和魏志华,2013,《金融危机冲击、财务柔性储备与企业投资行为——来自中国上市公司的经验证据》,《管理世界》第4期,第107~120页。
[14] 战明华、汤颜菲、李帅,2020,《数字金融发展、渠道效应差异和货币政策传导效果》,《经济研究》第6期,第22~38页。
[15] 张成思和张步昙,2016,《中国实业投资率下降之谜:经济金融化视角》,《经济研究》第12期,第32~46页。
[16] 张成思和郑宁,2019,《中国实业部门金融化的异质性》,《金融研究》第7期,第1~18页。
[17] 张杰、刘元春、翟福昕和芦哲,2013,《银行歧视、商业信用与企业发展》,《世界经济》第9期,第94~126页。
[18] Alfaro L., Kalemli-Ozcan S., Volosovych, and V. 2008. “Why doesn't Capital Flow from Rich to Poor Countries? An Empirical Investigation”, The Review of Economics and Statistics, 90(2): 347~368.
[19] Altman E.I. 1968. “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, Journal of Finance, 23(4): 589~609.
[20] Bai J. 2009. “Panel Data Models with Interactive Fixed Effects”, Econometrica, 77(4): 1229~1279.
[21] Berben R.P., Locarno A., and Morgan J.B. 2004. “Cross-country Differences in Monetary Policy Transmission”, Working Paper.
[22] Bernanke B., and M. Gertler. 1995. “Inside the Black Box: the Credit Channel of Monetary Policy Transmission”, Journal of Economic Perspectives, 9(4): 27~48.
[23] Berglof E., and Bolton P. 2002. “The Great Divide and Beyond: Financial Architecture in Transition”, Journal of Economic Perspectives, 16(1): 77~100.
[24] Bleck A., Liu X. 2018. “Credit Expansion and Credit Misallocation”, Journal of Monetary Economics, 94: 27~40.
[25] Clarida R., Gali J., and Gertler M. 1999. “The Science of Monetary Policy: a New Keynesian Perspective”, Journal of Economic Literature, 37(4): 1661~1707.
[26] Cramer J.G. 1986. “The Volume of Transactions and the Circulation of Money in the United States, 1950~1979”, Journal of Business & Economic Statistics, 4(2): 225~232.
[27] Harding M., and C. Lamarche. 2014. “Estimating and Testing a Quantile Regression Model with Interactive Effects”, Journal of Econometrics, 178: 101~113.
[28] Hsieh C.T., and Klenow, P.J. 2009. “Misallocation and Manufacturing TFP in China and India”, The Quarterly Journal of Economics, 124(4): 1403~1448.
[29] King R G, and Levine R. 1993. “Finance and Growth: Schumpeter Might be Right”, The Quarterly Journal of Economics, 108(3): 717~737.
[30] Mishkin F.S. 2007. “Housing and the Monetary Transmission Mechanism”, NBER Working Paper.
[31] Ouyang M. 2009. “The scarring Effect of ecessions”, Journal of Monetary Economics, 56(2): 184~199.
[32] Peek J, Rosengren, and E.S. 2005. “Unnatural Selection: Perverse Incentives and the Misallocation of Credit in Japan”, American Economic Review, 95(4): 1144~1166.
[33] Restuccia D., and Rogerson R. 2008. “Policy Distortions and Aggregate Productivity with Heterogeneous Establishments”, Review of Economic Dynamics, 11(4): 707~720.
[34] Romer C.D., D. H. Romer, and S. M. Goldfeld. 1999. “New Evidence on the Monetary Transmission Mechanism”, Brookings Papers on Economic Activity, 1: 149~213.
[35] Schivardi F, Sette E, Tabellini G. 2017. “Credit Misallocation During the European Financial Crisis”, Bank of Italy Temi di Discussione (Working Paper) No. 1139.
[36] Taylor, and J.B. 1995. “The Monetary Transmission Mechanism: an Empirical Framework”, Journal of Economic Perspectives, 9(4): 11~26.
[37] Whited T. M. and G. Wu. 2006. “Financial Constraints Risk”, Review of Financial Studies, 9(2): 531~559.
[1] 侯成琪, 黄彤彤. 流动性、银行间市场摩擦与借贷便利类货币政策工具[J]. 金融研究, 2020, 483(9): 78-96.
[2] 庄子罐, 贾红静, 刘鼎铭. 居民风险偏好与中国货币政策的宏观经济效应——基于DSGE模型的数量分析[J]. 金融研究, 2020, 483(9): 40-58.
[3] 马勇, 付莉. “双支柱”调控、政策协调搭配与宏观稳定效应[J]. 金融研究, 2020, 482(8): 1-17.
[4] 邓路, 刘欢, 侯粲然. 金融资产配置与违约风险:蓄水池效应,还是逐利效应?[J]. 金融研究, 2020, 481(7): 172-189.
[5] 黄继承, 姚驰, 姜伊晴, 牟天琦. “双支柱”调控的微观稳定效应研究[J]. 金融研究, 2020, 481(7): 1-20.
[6] 郝大鹏, 王博, 李力. 美联储政策变化、国际资本流动与宏观经济波动[J]. 金融研究, 2020, 481(7): 38-56.
[7] 王修华, 赵亚雄. 数字金融发展是否存在马太效应?——贫困户与非贫困户的经验比较[J]. 金融研究, 2020, 481(7): 114-133.
[8] 殷兴山, 易振华, 项燕彪. 总量型和结构型货币政策工具的选择与搭配——基于结构性去杠杆视角下的分析[J]. 金融研究, 2020, 480(6): 60-77.
[9] 张礼卿, 钟茜. 全球金融周期、美国货币政策与“三元悖论”[J]. 金融研究, 2020, 476(2): 15-33.
[10] 罗煜, 张祎, 朱文宇. 基于银行流动性管理视角的宏观审慎与货币政策协调研究[J]. 金融研究, 2020, 484(10): 19-37.
[11] 谭小芬, 李源, 苟琴. 美国货币政策推升了新兴市场国家非金融企业杠杆率吗?[J]. 金融研究, 2019, 470(8): 38-57.
[12] 贾盾, 孙溪, 郭瑞. 货币政策公告、政策不确定性及股票市场的预公告溢价效应——来自中国市场的证据[J]. 金融研究, 2019, 469(7): 76-95.
[13] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[14] 林东杰, 崔小勇, 龚六堂. 货币政策、消费品和投资品通货膨胀——基于金融加速器视角[J]. 金融研究, 2019, 465(3): 18-36.
[15] 陈雨露. 四十年来中央银行的研究进展及中国的实践[J]. 金融研究, 2019, 464(2): 1-19.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1