Please wait a minute...
金融研究  2019, Vol. 474 Issue (12): 169-186    
  论文 本期目录 | 过刊浏览 | 高级检索 |
中国房地产市场价格泡沫与空间传染效应
李伦一, 张翔
西南财经大学金融学院/大数据研究院,四川成都 611130
Real Estate Price Bubbles and the Spatial Contagion Effect:Evidence from 100 Cities in China
LI Lunyi, ZHANG Xiang
School of Finance/Institute of Big Data, Southwestern University of Finance and Economics
下载:  PDF (885KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文使用对数周期性幂律(Log Period Power Law, LPPL)模型对房地产市场价格泡沫进行测度,运用空间计量模型对我国房地产市场价格泡沫和空间传染效应进行研究。LPPL模型认为由价格泡沫产生并最终破裂的金融市场与地震系统具有很多相似之处,即金融资产的价格呈周期性变化规律,价格持续上涨到临界状态直至反转。本文采用2010年6月至2017年11月间我国100个城市的房地产市场数据对各城市房地产价格泡沫进行测度和物理/经济空间传染效应研究。研究发现,LPPL模型能够对我国100个城市房地产价格泡沫进行甄别且主要存在两种泡沫状态:正向泡沫(房价持续上升)和反转泡沫(房价整体下降却存在反转点)。各个城市(地区)房地产价格具有较强的空间传染性;存在正向泡沫区域的空间传染性相较反转泡沫区域更为明显,在考虑经济空间测度而不是物理空间测度的情况下,各城市间的空间传染性更强。与现有文献不同,我们发现反转泡沫区域的新房价格指数特别是二手房价格指数的上升对周边城市的房地产价格指数存在强烈的正向推高影响。最后,本文发现城市的房地产调控政策在一定程度上抑制了房价传统影响(比如信贷、新房、二手房价等)因素的推高影响,但各城市房地产价格之间的联动变化特征应该引起监管部门的注意。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伦一
张翔
关键词:  房地产市场价格泡沫  空间传染  房地产调控政策  对数周期性幂律模型(Log Period Power Law, LPPL)  空间滞后模型相结合的杜宾模型(Spatial Dubin Model)    
Summary:  This study uses the log period power law (LPPL) model to measure price bubbles in real estate markets in China, and the spatial econometric model to study the price bubble contagion effect. This study asks the following questions. Compared with other financial assets, how can price bubbles be measured in the real estate market? Are price bubbles in the real estate market spatially contagious? What is the mechanism behind the contagion? Do macro-control policies effectively prevent real estate price bubbles from expanding? This study not only quantitatively analyzes the real estate price bubbles in various Chinese cities, but also discovers the relationship between real estate bubbles in different regions. The findings will help local governments to regulate real estate based on local conditions and will help them to develop appropriate policies. According to the LPPL model used in this study, the financial market generated by price bubbles and their eventual collapse is in many ways similar to the seismic system; that is, the price of financial assets changes in a cyclical pattern, and the price continues to rise until a critical state leads to a reversal.
   The LPPL model is mainly used for seismic research. Johansen, Ledoit, and Sornette (2000) and Zhou and Sornette (2005) are the first to apply LPPL to the analysis of asset price bubble behavior in financial markets. Many studies use the LPPL to predict historical financial crises and bubble and anti-bubble phenomena in Western financial markets. They all find that the LPPL model has the best simulation and prediction results for studies of these phenomena.
   The LPPL model used in this study is a commonly used and mature model for studying the bubble theory. It uses observed price time series data to detect the formation of price bubbles and their expected collapse point, that is, the end point of the bubble. It focuses on the simulation of the price formation process itself and the prediction of the price reversal point. Unlike the stock market, real estate price bubbles are characterized by medium-to-long-term continuous rises in price formation, and they occur slowly. The LPPL model can better simulate the process of real estate price growth and reversal. Unlike previous studies, this study considers the characteristics of real estate price bubbles in both the upward and downward stages of the bubble. The biggest difference between the two stages lies in the price dynamics before and after the price collapse point. In a positive bubble, the price appears to grow faster than exponentially with accompanying oscillations, and a price collapse point appears at a future point. The reverse bubble stage begins at the price collapse point, after which prices trend downwards.
   The second innovation of this study is to use the combined cross-sectional physical and economic distances between cities to explore whether real estate price bubbles measured by LPPL have a spatial contagion effect.
   Finally, this study uses the recent real estate control policies issued by some cities to conduct an event study of the impact of these policies on real estate price bubbles. Therefore, this study examines the behaviors of real estate price bubbles before and after the implementation of real estate control policies in some first-tier cities, and whether the contagiousness of the bubble space is weakened or strengthened by these control policies.
   This study uses microstructure real estate market data from 100 cities from the June 2010 to November 2017 period. The LPPL model identifies real estate price bubbles in 100 cities in China, and the bubbles have two main states: a positive bubble (housing prices continue to rise) and reverse bubble (housing prices decline overall, but there is a reversal point). In each city (area), real estate prices have a strong spatial contagion. The spatial infectivity of areas with a positive bubble is more obvious than that of areas with a reverse bubble. When economic measures are used to define spaces instead of physical measurements, the spatial infectivity between cities is stronger. Unlike previous studies, this study finds that increases in the new house price index in reverse bubble areas, especially the second-hand house price index, has a strong positive impact on the real estate price index in surrounding cities. Finally, this study finds that the real estate regulation policies in cities to some extent restrain the traditional impact of housing prices (such as credit and new and second-hand housing prices). Purchase restrictions, price restrictions, loan restrictions, and sales restriction all affect the real estate market through different channels. Loan restrictions create an inflection point in the market, whereas sales restrictions can effectively inhibit market investment. However, the link between real estate prices in various cities should be considered by regulators seeking to control real estate price bubbles.
Keywords:  Real Estate Market Price Bubble    Spatial Contagion    Real Estate Regulation Policy    Log Period Power Law (LPPL)    Spatial Dubin Model
JEL分类号:  G12   G14   Q02  
通讯作者:  张翔,经济学博士,副教授,西南财经大学金融学院,西南财经大学大数据研究院,E-mail:xiangzhang@swufe.edu.cn.   
作者简介:  李伦一,管理学学士,博士生,西南财经大学金融学院,E-mail:lunyi.li94@gmail.com.
引用本文:    
李伦一, 张翔. 中国房地产市场价格泡沫与空间传染效应[J]. 金融研究, 2019, 474(12): 169-186.
LI Lunyi, ZHANG Xiang. Real Estate Price Bubbles and the Spatial Contagion Effect:Evidence from 100 Cities in China. Journal of Financial Research, 2019, 474(12): 169-186.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2019/V474/I12/169
[1] 曹琳剑和王杰,2018,《房地产泡沫的测度预警及防范》,《中国房地产》第12期,第71~79页。
[2] 况伟大,2008,《中国住房市场存在泡沫吗》,《世界经济》第12期,第3~13页。
[3] 李永刚, 2014,《中国个人住房房产税制度设计研究——基于国际经验借鉴视角》,《经济与管理研究》第1期。
[4] 刘民权和孙波,2009,《商业地价形成机制、房地产泡沫及其治理》,《金融研究》第10期,第22~38页。
[5] 孟庆斌和荣晨,2017,《中国房地产价格泡沫研究——基于马氏域变模型的实证分析》,《金融研究》第2期,第101~116页。
[6] 潘爱民、王鹤和陈湘洲,2014,《经济环境、调控政策与区域房价——基于面板数据同期强相关视角》,《南方经济》第6期。
[7] 孙焱林和张攀红,2016,《房地产泡沫测度及区域间联动与传染》,《金融学季刊》第10卷,第1期,第1~19页。
[8] 望晓东和吴顺辉,2016,《上海市房地产泡沫实证检测》,《中国房地产金融》第11期,第40~44页。
[9] 余华义和黄燕芬,2015,《货币政策效果区域异质性、房价溢出效应与房价对通胀的跨区影响》,《金融研究》第2期,第1~19页。
[10] 张亚丽,2013,《国土资源精细化管理的途径创新》,《科技创新导报》11月1号。
[11] Asgharian, H., Hess, W. and Liu, L., 2013. “A Spatial Analysis of International Stock Market Linkages”, Journal of Banking & Finance, 37(12), pp.4738~4754.
[12] Cameron, G., Muellbauer, J. and Murphy, A., 2006. “Bubble trouble-are British House Prices Significantly Overvalued?”, Economic Outlook, 5.8.
[13] Capozza, D. R., Hendershott, P. H. and Mack, C., 2002. “Determinants of Real House Price Dynamics”, NBER Working Paper Series, 1.1.
[14] Chan, H.L., Lee, S.K. and Woo, K.Y., 2001. “Detecting Rational Bubbles in the Residential housing Markets of Hong Kong”. Economic Modelling, 18(1), pp.61~73.
[15] Glaeser, E.L., 2017. “Real Estate Bubbles and Urban Development”. Asian Development Review, 34(2), pp.114~151.
[16] Johansen A, Ledoit O. and Sornette D., 2000. “Crashes as Critical Points”. International Journal of Theoretical and Applied Finance, April 3(02):219~55.
[17] Nneji O., Brooks C. and Ward, C., 2015. “Speculative Bubble Spillovers across Regional Housing Markets”, Land Economics, Volume 91, Issue 3.
[18] Qun Z.., Sornette D. and Zhang, H., 2017. “Anticipating Critical Transitions of Chinese Housing Markets”, Swiss Finance Institute Research Paper, No. 17~18.
[19] Sornette, D., Woodard, R., Yan, W. and Zhou, W.X., 2013. “Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette Financial Bubble Model”, Physica A: Statistical Mechanics and its Applications, 392(19), pp.4417~4428.
[20] Zhou W. X. and Sornette, D., 2005. “Is there a real-estate Bubble in the US”, Physica A: Statistical Mechanics and Its Applications, 361(1):297~308.
[1] 朱红兵, 张兵. 价值性投资还是博彩性投机?——中国A股市场的MAX异象研究[J]. 金融研究, 2020, 476(2): 167-187.
[2] 刘杰, 陈佳, 刘力. 投资者关注与市场反应——来自中国证券交易所交易公开信息的自然实验[J]. 金融研究, 2019, 473(11): 189-206.
[3] 尹力博, 廖辉毅. 中国A股市场存在品质溢价吗?[J]. 金融研究, 2019, 472(10): 170-187.
[4] 陈国进, 丁杰, 赵向琴. “好”的不确定性、“坏”的不确定性与股票市场定价——基于中国股市高频数据分析[J]. 金融研究, 2019, 469(7): 174-190.
[5] 朱菲菲, 李惠璇, 徐建国, 李宏泰. 短期羊群行为的影响因素与价格效应——基于高频数据的实证检验[J]. 金融研究, 2019, 469(7): 191-206.
[6] 黄隽, 李越欣. 中国艺术品投资收益:离岸与在岸市场的特征和互动[J]. 金融研究, 2019, 468(6): 188-206.
[7] 刘丽华, 徐艳萍, 饶品贵, 陈玥. 一损俱损:违规事件在企业集团内的传染效应研究[J]. 金融研究, 2019, 468(6): 113-131.
[8] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[9] 杨涛, 郭萌萌. 投资者关注度与股票市场——以PM2.5概念股为例[J]. 金融研究, 2019, 467(5): 190-206.
[10] 谢谦, 唐国豪, 罗倩琳. 上市公司综合盈利水平与股票收益[J]. 金融研究, 2019, 465(3): 189-207.
[11] 李科, 陆蓉, 夏翊, 胡凡. 基金经理更换、股票联动与股票价格[J]. 金融研究, 2019, 463(1): 188-206.
[12] 李志冰, 刘晓宇. 基金业绩归因与投资者行为[J]. 金融研究, 2019, 464(2): 188-205.
[13] 陈思翀, 陈英楠. 中国住房市场波动的影响因素研究——基于租金收益率的方差分解[J]. 金融研究, 2019, 464(2): 136-153.
[14] 王永钦, 徐鸿恂. 杠杆率如何影响资产价格?——来自中国债券市场自然实验的证据[J]. 金融研究, 2019, 464(2): 20-39.
[15] 丛明舒. 中国场内期权市场研究——基于中美关于期权隐含方差的差异[J]. 金融研究, 2018, 462(12): 189-206.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1