Please wait a minute...
金融研究  2016, Vol. 430 Issue (4): 174-189    
  本期目录 | 过刊浏览 | 高级检索 |
融资融券业务个人客户违约概率计量研究
程天笑, 闻岳春
国泰君安证券股份有限公司,上海 200120;
同济大学经济与管理学院,上海 200082
Probability of Default Measurement Study for Individual Client of MarginTrading and Securities Lending Business
CHENG Tianxiao, WEN Yuechun
GuoTai JunAn Securities Co., LTD;
School of Economics & Management,Tongji University
下载:  PDF (1511KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 伴随股市波动加剧,证券公司融资融券业务信用风险形势日趋严峻。违约概率被用于客户准入管理、风险定价与信贷组合管理等多个方面,处于信用风险管理的基础性地位。本文使用Probit、Logistic与Extreme Value模型,讨论融资融券业务个人客户的违约概率计量。在融资融券业务开展时间较短、数据积累与整理工作尚不完善的情况下,本文重点使用信用账户的资产负债结构信息计量违约概率,并从模型准确性与拟合性的角度,使用ROC曲线与Brier评分方法对三种模型进行比较与验证。研究结果表明:三种模型均具有较强的区分能力,但Extreme Value模型准确性最强,拟合效果最好,最适合于计量融资融券业务的违约概率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程天笑
闻岳春
关键词:  融资融券  二元选择模型  违约概率    
Abstract:  With the aggravation of the stock market volatility, the margin trading and securities lending business of security firm is facing a stringent challenge and the demand of credit risk measurement. As the fundamental of credit risk measurement, the measurement of probability of default is meaningful for the customer access management, risk pricing and credit portfolio management. The paper studies measurement of default of probability for individual client in margin trading and securities lending business firstly by Probit, Logistic and Extreme Value model. The history of margin trading and securities lending business is short, data accumulation and management is not perfect yet. In this situation, the paper included the information of asset-debt structure of credit account, and tested the accuracy by ROC curve and Brier score, which proved that the high precision of all three models, but Extreme Value model has higher adaptability for measuring of margin trading and security lending business than other models.
Key words:  Margin Trading and Securities Lending    DCM    Probability of Default
JEL分类号:  G32  
基金资助: 本文感谢国家自然科学基金面上项目“中国资本市场系统稳定性评估与监测研究”资助(批准号:71273190)
作者简介:  程天笑,金融学博士,国泰君安证券股份有限公司风险管理部,Email:tianxiao_cheng@163.com.闻岳春,管理学博士,教授,同济大学经济与管理学院。
引用本文:    
程天笑, 闻岳春. 融资融券业务个人客户违约概率计量研究[J]. 金融研究, 2016, 430(4): 174-189.
CHENG Tianxiao, WEN Yuechun. Probability of Default Measurement Study for Individual Client of MarginTrading and Securities Lending Business. Journal of Financial Research, 2016, 430(4): 174-189.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2016/V430/I4/174
[1] 韩立岩和谢朵,2005,《基于期权的资金信托违约风险度量》,《金融研究》第3期,第109-119页。
[2] 李科、徐龙炳和朱伟骅,2014,《卖空限制与股票错误定价——融资融券制度的证据》,《经济研究》第10期,第165~178页。
[3] 李志生、陈晨和林秉旋,2015,《卖空机制提高了中国股票市场的定价效率吗?——基于自然实验的证据》,《经济研究》第4期,第165~178页。
[4] 梁琪、过新伟和石宁,2014,《基于随机效应logistic模型的中小企业财务失败预警研究》,《管理工程学报》第3期,第126~134页。
[5] 钱争鸣、李海波和于艳萍,2010,《个人住房按揭贷款违约风险研究》,《经济研究》增刊,第143~152页。
[6] 王旻、廖士光、吴淑琨,2008:《融资融券交易的市场冲击效应研究——基于中国台湾证券市场的经验与启示》,《财经研究》,第10期,第99~109页。
[7] 徐晓萍和马文杰,2011:《非上市中小企业贷款违约率的定量分析——基于判别分析法和决策树模型的分析》,《金融研究》,第3期,第111~120页。
[8] 许红伟和陈欣,2012,《我国推出融资融券交易促进了标的股票的定价效率吗?——基于双重差分模型的实证研究》,《管理世界》第5期,第52~61页。
[9] Allen, Franklin, and Gale Douglas. 1991. “Arbitrage, Short Sales and Financial Innovation”, Econometrica, 59(4): 1041~1068.
[10] Angilella, Silvia., and Mazzù Sebastiano. 2015. “The financing of innovative SMEs: A Multicriteria Credit Rating Model”, European Journal of Operational Research, Article in Press.
[11] Bris, Arturo, William N. Goetzmann, and Ning Zhu. 2007. “Efficiency and the Bear: Short Sales and Market around the World”, Journal of Finance, 62(3): 1029~1079.
[12] Campbell, John.Y., Hilscher Jeans, and Szilagyi Jan. 2008. “In Search of Distress Risk”, Journal of Finance, 63(6): 2899~2939.
[13] Chang, Eric C., Joseph W. Cheng, and Yinghui Yu. 2007. “Short Sales Constrains and Price Discovery: Evidence from the Hong Kong Market”, Journal of Finance, 62(5): 2097~2121.
[14] Chang, Eric C., Yan Luo, and Jinjuan Ren. 2014. “Short-selling, Margin-trading, and Price Efficiency: Evidence from the Chinese Market”, Journal of Banking & Finance, 48: 411~424.
[15] Collin-Dufresne, Pierre, and Robert S. Goldstein. 2001. “Do Credit Spreads Reflect Stationary Leverage Ratios?”, Journal of Finance, 56(5): 1929~1957.
[16] Danenas, Paulius, and Gitautas Garsva. 2015. “Selection of Support Vector Machines Based Classifiers for Credit Risk Domain”, Expert Systems with Applications, 42(6): 3194~3204.
[17] Dereliogˇlu, Gülnur, and Fikret Gürgen. 2011. “Knowledge Discovery Using Neural Approach for SME’s Credit Risk Analysis Problem in Turkey”, Expert Systems with Applications, 38(8): 9313~9318.
[18] Diamond, Douglas W., and Robert E. Verrecchia. 1987. “Constraints on Short Selling and Asset Price Adjustment to Private Information”, Journal of Financial Economics, 18(2): 277~311.
[19] Doumpos, M., K. Kosmidou, G. Baourakis, and C. Zopounidis. 2002. “Credit Risk Assessment Using a Multicriteria Hierarchical Discrimination Approach: A Comparative Analysis”, European Journal of Operational Research, 138(2): 392~412.
[20] Duffie, Darrell, and Kenneth J. Singleton. 1999. “Modeling Term Structures of Defaultable Bonds", Review of Financial Studies, 12(4): 687~720.
[21] Fiordelisi, Franco, and David Marqués-Ibanez. 2013. “Is Bank Default Risk Systematic?”, Journal of Banking & Finance, 37(6): 2000~2010.
[22] Goldstein, Itay, and Alexander Guembel. 2008. “Manipulation and the Allocational Role of Prices”, Review of Economic Studies, 75(1): 133~164.
[23] Hong, Harrison, and Jeremy C. Stein. 2003. “Differences of Opinion, Short-sales Constraints and Market Crashes”, Review of Financial Studies, 16(2): 487~525.
[24] Jarrow, Robert A., and Stuart M. Turnbull. 1995. “Pricing Derivatives on Financial Securities Subject to Default Risk”, Journal of Finance, 50(1): 53~85.
[25] Lando, David. 1998. “On Cox Processes and Credit -risky Securities”, Review of Derivatives Research, 2(2):99~120.
[26] Leland, Hayne E., and Klaus B. Toft. 1996. “Optimal Capital Structure, Endogenous Bankruptcy and the Term Structure of Credit Spreads”, Journal of Finance, 51(3): 987~1019.
[27] Merton, Robert C.. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates”, Journal of Finance, 29(2): 449~470.
[28] Miller, Edward M.. 1977. “Risk, Uncertainty and Divergence of Option”, Journal of Finance, 32(4): 1151~1168.
[29] Stein, Roger M.. 2005. “The Relationship between Default Prediction and Lending Profits: Integrating ROC Analysis and Loan Pricing”, Journal of Banking & Finance, 29(5): 1213~1236.
[30] Tian, Shaonan, Yan Yu, and Hui Guo. 2015. “Variable Selection and Corporate Bankruptcy Forecasts”, Journal of Banking & Finance, 52: 89~100.
[31] Yu, Lean, Wuyi Yue, Shouyang Wang, and K.K. Lai. 2010. “Support Vector Machine Based Multiagent Ensemble Learning for Credit Risk Evaluation”, Expert Systems with Applications, 37(2): 1351~1360.
[32] Zhao, Zhongkuang, Shuqi Li, and Heping Xiong. 2014. “Short Sale Constraints, Disperse Pessimistic Beliefs and Market Efficiency— Evidence from the Chinese Stock Market”, Economic Modelling, 42: 333~342.
[1] 苏冬蔚, 彭松林. 卖空者与内幕交易——来自中国证券市场的证据[J]. 金融研究, 2019, 471(9): 188-207.
[2] 张国峰, 王永进, 李坤望. 贸易自由化对制造业企业现金储蓄的影响——预防性动机还是投资挤压?[J]. 金融研究, 2019, 471(9): 19-38.
[3] 刘威, 黄晓琪. 经济政策不确定性、地区文化与保险需求[J]. 金融研究, 2019, 471(9): 39-56.
[4] 谭小芬, 李源, 苟琴. 美国货币政策推升了新兴市场国家非金融企业杠杆率吗?[J]. 金融研究, 2019, 470(8): 38-57.
[5] 戴亦一, 张鹏东, 潘越. 老赖越多,贷款越难?——来自地区诚信水平与上市公司银行借款的证据[J]. 金融研究, 2019, 470(8): 77-95.
[6] 唐松, 施文, 孙安其. 环境污染曝光与公司价值——理论机制与实证检验[J]. 金融研究, 2019, 470(8): 133-150.
[7] 江伟, 底璐璐, 胡玉明. 改进型创新抑或突破型创新——基于客户集中度的视角[J]. 金融研究, 2019, 469(7): 155-173.
[8] 宋全云, 李晓, 钱龙. 经济政策不确定性与企业贷款成本[J]. 金融研究, 2019, 469(7): 57-75.
[9] 钱雪松, 唐英伦, 方胜. 担保物权制度改革降低了企业债务融资成本吗?——来自中国《物权法》自然实验的经验证据[J]. 金融研究, 2019, 469(7): 115-134.
[10] 张成思, 郑宁. 中国实业部门金融化的异质性[J]. 金融研究, 2019, 469(7): 1-18.
[11] 陈湘鹏, 周皓, 金涛, 王正位. 微观层面系统性金融风险指标的比较与适用性分析——基于中国金融系统的研究[J]. 金融研究, 2019, 467(5): 17-36.
[12] 梁上坤, 张宇, 王彦超. 内部薪酬差距与公司价值——基于生命周期理论的新探索[J]. 金融研究, 2019, 466(4): 188-206.
[13] 巫岑, 黎文飞, 唐清泉. 产业政策与企业资本结构调整速度[J]. 金融研究, 2019, 466(4): 92-110.
[14] 余明桂, 钟慧洁, 范蕊. 民营化、融资约束与企业创新——来自中国工业企业的证据[J]. 金融研究, 2019, 466(4): 75-91.
[15] 郭妍, 韩庆潇. 盈利水平、支农服务与风险控制——农商行规模调整的理论分析与实证检验[J]. 金融研究, 2019, 466(4): 130-148.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1