Please wait a minute...
金融研究  2025, Vol. 538 Issue (4): 57-74    
  本期目录 | 过刊浏览 | 高级检索 |
商业银行采纳人工智能有助于优化企业绿色转型中的信贷支持吗?
钟茜
广东外语外贸大学金融学院, 广东广州 510006
Does AI Adoption by Commercial Banks Enhance Credit Support for Corporate Green Transition?
ZHONG Qian
School of Finance,Guangdong University of Foreign Studies
下载:  PDF (809KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文从银行利润最大化视角构建理论模型,结合2013—2022年上市公司逐笔贷款数据,考察商业银行采纳人工智能是否有助于提升 “识绿”能力、优化企业绿色转型中的信贷支持。理论发现,现阶段我国绿色金融政策力度较大,人工智能赋能商业银行精准“识绿”能力,提高绿色金融配置效率,降低企业特别是绿色企业的融资成本与融资约束。实证结果显示,银行人工智能采纳率提高,企业整体贷款利率浮动幅度降低,融资约束减少,尤其惠及绿色企业,对非绿色企业无显著影响。这表明人工智能可提升绿色金融的精准性,同时不会挤出非绿色企业低碳转型的融资空间。本研究为人工智能时代如何优化绿色金融政策,促进经济高质量发展提供了政策参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟茜
关键词:  人工智能  绿色信贷  企业异质  全面绿色转型    
Summary:  Amid China's comprehensive green transition, a structural conflict has emerged between the urgent need for high-carbon enterprises to decarbonize and their limited access to stable external financing. As a structural financial policy tool, green finance faces persistent challenges in identifying truly green or transitioning firms, a problem rooted in green information asymmetry. This asymmetry results in a mismatch: the supply of green credit is concentrated in fully green enterprises, while demand is concentrated in high-emission firms undergoing low-carbon transition. Addressing this allocation mismatch is critical to improving both the equity and efficiency of green financial resource distribution and supporting the real economy's decarbonization pathway. Artificial intelligence (AI), as a disruptive general-purpose technology, offers new potential to address this problem. Despite AI's proven utility in areas such as credit risk modeling and robot-advisory services, existing literature provides limited evidence on how AI can enable green finance—particularly under China's policy-driven structural financial system. Prior studies often emphasize the broad effects of fintech on the real economy while overlooking how fintech enables structural financial policies to have differentiated impacts on the real economy.
To fill this gap, this paper starts from the perspective of enterprise loan cost and financing constraint and investigates whether and how AI adoption by commercial banks enhances green credit allocation by improving banks' ability to identify green or transitioning firms—what we refer to as their green recognition capability. This paper develops a theoretical model of banks' optimal loan pricing under green financial policy constraints and green information asymmetry, in which AI adoption influences banks' identification precision and thus their credit allocation behavior. The model's predictions are empirically tested using firm-level matched loan data for all A-share listed companies in China from 2013 to 2022. The results show that each 1% increase in a bank's AI adoption rate is associated with a 5.06 basis point reduction in the average loan interest rate markup, with a more pronounced reduction of 7.28 basis points for green firms, while the effect is statistically insignificant for non-green firms. From the perspective of financing constraints, each 1% increase in AI adoption is associated with a 1.61 basis point decrease in firms' financing constraints measured by the KZ index, driven mainly by a 1.40 basis point reduction for green firms. These findings suggest that AI adoption enables banks to better serve green enterprises without adversely affecting non-green firms, effectively reducing both loan costs and financing frictions for green firms. Crucially, this paper finds that the impact is significantly greater for firms with lower green information transparency, providing empirical support for the mechanism whereby AI strengthens banks' green recognition capability and enhances real economy outcomes. The effect is more pronounced for banks with faster loan growth and in regions with higher environmental spending.
Based on these findings, three policy recommendations are proposed. First, promote the deep integration of AI and green finance by strengthening banks' green identification capabilities through unified green standards, transparent data infrastructure, and supportive regulatory frameworks. Second, accelerate the development of transition finance standards by leveraging AI to identify and support decarbonization in high-carbon sectors, thereby reducing banks' perceived risk premiums and improving credit access for transitioning firms. Third, adopt differentiated, region-and sector-specific policies to pilot AI-powered green finance reforms, enabling scalable policy experimentation and tailored support for diverse transition pathways.
This paper contributes to the literature in three ways. First, it provides theoretical and empirical evidence on the feasibility and necessity of integrating AI with green finance, a topic at the frontier of interdisciplinary research between economics and artificial intelligence. Second, it expands the analysis of structural financial policy heterogeneity, demonstrating how targeted financial instruments, when empowered by technology, can yield differentiated real economy outcomes. From the perspective of artificial intelligence enabling green finance, it provides direct evidence for China's comprehensive green transformation. Third, it offers a novel perspective on addressing the financing gap for non-green firms during green transition, and provides actionable insights into how AI can help overcome green information asymmetries and improve the precision of financial support for decarbonization in high-emission sectors.
Keywords:  Artificial Intelligence    Green Credit    Enterprise Heterogeneity    Green Transformation
JEL分类号:  D61   E43   G21  
基金资助: * 本文感谢广东省社科规划办青年项目(GD22YYJ02)、广东省基础与应用基础研究基金项目(2023A1515110153)和广东外语外贸大学特色创新项目(23TS30)的资助。感谢匿名审稿人的宝贵意见,文责自负。
作者简介:  钟 茜,经济学博士,讲师,广东外语外贸大学金融学院/金融开放与资产管理研究中心,广州华南财富管理中心,E-mail:zhongqian@gdufs.edu.cn.
引用本文:    
钟茜. 商业银行采纳人工智能有助于优化企业绿色转型中的信贷支持吗?[J]. 金融研究, 2025, 538(4): 57-74.
ZHONG Qian. Does AI Adoption by Commercial Banks Enhance Credit Support for Corporate Green Transition?. Journal of Financial Research, 2025, 538(4): 57-74.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V538/I4/57
[1] 杜兴强、谢裕慧和曾泉,2024,《绿色金融政策抑制了企业的环境违规吗?——基于绿色金融改革创新试验区的一项准自然实验》,《金融研究》第5期,第132~149页。
[2] 杜克锐、李旻旸、王思泉和林伯强,2024,《煤炭价格冲击与新能源业务扩张叠加下的企业融资约束》,《经济研究》第12期,第4~20页。
[3] 方颖和郭俊杰,2018,《中国环境信息披露政策是否有效:基于资本市场反应的研究》,《经济研究》第10期,第158~174页。
[4] 黄益平和邱晗,2021,《大科技信贷:一个新的信用风险管理框架》,《管理世界》第2期,第12~21页。
[5] 蒋涛、吴卫星和宫迪,2017,《政治风险会影响贷款定价吗》,《管理评论》第9期,第3~14页。
[6] 刘锡良和文书洋,2019,《中国的金融机构应当承担环境责任吗?——基本事实、理论模型与实证检验》,《经济研究》第3期,第38~54页。
[7] 刘婷婷,2016,《利率市场化、特许经营权与贷款定价》,《宏观经济研究》第3期,第62~72页。
[8] 刘莉亚、余晶晶、杨金强和朱小能,2017,《竞争之于银行信贷结构调整是双刃剑吗?——中国利率市场化进程的微观证据》,《经济研究》第5期,第131~145页。
[9] 李雅婷和陈济,2023,《高碳资产绿色转型的关键》,《中国金融》第15期,第34~35页。
[10] 马骏,2022,《〈G20转型金融框架〉及对中国的借鉴》,《中国金融》第23期,第21~23页。
[11] 潘冬阳、陈川祺和Michael Grubb,2021,《金融政策与经济低碳转型——基于增长视角的研究》,《金融研究》第5期,第1~19页。
[12] 宋全云、李晓和钱龙,2019,《经济政策不确定性与企业贷款成本》,《金融研究》第7期,第57~75页。
[13] 苏冬蔚和刘子茗,2023,《绿色金融改革是否影响业绿色绩效与漂绿风险》,《国际金融研究》第4期,第74~85页。
[14] 王馨和王营,2021,《绿色信贷政策增进绿色创新研究》,《管理世界》第6期,第173~188页。
[15] 文书洋、刘浩和王慧,2022,《绿色金融、绿色创新与经济高质量发展》,《金融研究》第8期,第1~17页。
[16] 王红建、张科和李青原,2023,《金融科技的经济稳定器作用:金融加速器理论的视角》,《经济研究》第12期,第4~21页。
[17] 魏志华、曾爱民和李博,2014,《金融生态环境与企业融资约束——基于中国上市公司的实证研究》,《会计研究》第5期,第73~95页。
[18] 姚加权、张锟澎、郭李鹏和冯绪,2024,《人工智能如何提升企业生产效率?——基于劳动力技能结构调整的视角》,《管理世界》第2期,第101~116+133+117~122页。
[19] 易行健和周利,2018,《 数字普惠金融发展是否显著影响了居民消费——来自中国家庭的微观证据》,《金融研究》第11期,第101~116页。
[20] 俞中、佟孟华和赵江山,2025,《排污许可监管、绿色金融创新与企业信贷融资》,《世界经济》第5期,第89~127页。
[21] 严成樑、赵扶扬和牛欢,2024,《环境目标责任制、环境治理与内生经济增长》,《经济研究》第4期,第133~152页。
[22] 战明华和应诚炜,2015,《利率市场化改革、企业产权异质与货币政策广义信贷渠道的效应》,《经济研究》第9期,第114~126页。
[23] 张希良、黄晓丹、张达、耿涌、田立新、范英和陈文颖,2022,《碳中和目标下的能源经济转型路径与政策研究》,《管理世界》第1期,第35~51页。
[24] 张一林、郁芸君和陈珠明,2021,《人工智能、中小企业融资与银行数字化转型》,《中国工业经济》第12期,第69~87页。
[25] 朱光顺和魏宁,2023,《负责任的银行贷款与上市公司ESG表现》,《数量经济技术经济研究》,第4期,第133~151页。
[26] Babina, T., A. Fedyk, A. He, and J. Hodson, 2024, “Artificial Intelligence, Firm Growth, and Product Innovation”, Journal of Financial Economic, 151, 103745.
[27] Fraisse, H., and M. Laporte, 2022, “Return on Investment on Artificial Intelligence: The Case of Bank Capital Requirement”, Journal of Banking & Finance. 138(5). 106401.
[28] Gambacorta, L., 2008, “How Do Banks Set Interest Rates?”, European Economic Review, 52(5), pp.792~819.
[29] Haenlein, M., and A. Kaplan, 2019, “A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence”, California Management Review, 61(4), pp.5~14.
[30] Kaplan, S., and L. Zingales, 1997, “Do Investment-cash Flow Sensitivities Provide Useful Measures of Financing Constraints?”, Quarterly Journal of Economics, 112, pp.169~215.
[1] 张甜, 刘一鸣. 绿色企业的贷款利率会更低吗?——基于商业银行贷款定价行为的视角[J]. 金融研究, 2025, 537(3): 76-93.
[2] 尹恒, 张道远, 李辉. 中国劳动收入份额的演变趋势及基于制造业的驱动力探索[J]. 金融研究, 2024, 529(7): 152-169.
[3] 王韧, 段义诚, 何强. 绿色产业的信贷成本匹配与资源配置效率:宏观效应与微观机制[J]. 金融研究, 2024, 534(12): 97-115.
[4] 王钰冰, 郭凯明, 龚六堂. 结构性就业矛盾、劳动时间配置与人工智能技术革命[J]. 金融研究, 2024, 523(1): 1-18.
[5] 李俊成, 彭俞超, 王文蔚. 绿色信贷政策能否促进绿色企业发展?——基于风险承担的视角[J]. 金融研究, 2023, 513(3): 112-130.
[6] 马理, 张人中, 马威, 牛慕鸿. 能源结构有序调整与绿色信贷政策调控[J]. 金融研究, 2023, 511(1): 94-112.
[7] 王雅琦, 王瑶, 张礼卿. 汇率波动对出口稳定的影响:中间品进口的作用[J]. 金融研究, 2023, 511(1): 75-93.
[8] 金祥义, 张文菲, 施炳展. 绿色金融促进了中国出口贸易发展吗?[J]. 金融研究, 2022, 503(5): 38-56.
[9] 丁杰, 李仲飞, 黄金波. 绿色信贷政策能够促进企业绿色创新吗?——基于政策效应分化的视角[J]. 金融研究, 2022, 510(12): 55-73.
[10] 周广肃, 李力行, 孟岭生. 智能化对中国劳动力市场的影响——基于就业广度和强度的分析[J]. 金融研究, 2021, 492(6): 39-58.
[11] 李哲, 王文翰. “多言寡行”的环境责任表现能否影响银行信贷获取——基于“言”和“行”双维度的文本分析[J]. 金融研究, 2021, 498(12): 116-132.
[12] 郭晔, 房芳. 新型货币政策担保品框架的绿色效应[J]. 金融研究, 2021, 487(1): 91-110.
[13] 丁宁, 任亦侬, 左颖. 绿色信贷政策得不偿失还是得偿所愿?——基于资源配置视角的PSM-DID成本效率分析[J]. 金融研究, 2020, 478(4): 112-130.
[14] 孙天阳, 成丽红. 协同创新网络与企业出口绩效——基于社会网络和企业异质性的研究[J]. 金融研究, 2020, 477(3): 96-114.
[15] 魏浩, 白明浩, 郭也. 融资约束与中国企业的进口行为[J]. 金融研究, 2019, 464(2): 98-116.
[1] 郭豫媚, 王航, 郭田勇, 郭俊杰. 中央银行通货膨胀预期管理有效性评估——基于文本通货膨胀预期指数的研究[J]. 金融研究, 2025, 538(4): 1 -20 .
[2] 戴亦一, 梁师赫, 王剑韬, 梁伟娟. 地铁开通的降本效应——来自企业用工的微观证据[J]. 金融研究, 2025, 538(4): 151 -169 .
[3] 伍燕然, 祁莉莉, 李忠太. 基金再申购行为中的近因效应研究[J]. 金融研究, 2025, 538(4): 189 -206 .
[4] 黄叙涵, 马光荣, 熊芮. 中小企业与经济增长——理论梳理和实证研究[J]. 金融研究, 2025, 536(2): 20 -38 .
[5] 何富美, 刘兵, 欧阳志刚. 通胀预期不确定性的内需效应: 理论机制与经验证据[J]. 金融研究, 2025, 537(3): 1 -20 .
[6] 宗计川, 吴庆帮. 流动性冲击与系统重要性银行的稳定作用[J]. 金融研究, 2025, 538(4): 21 -38 .
[7] 刘磊, 王辉. 中国地方财政支出乘数研究[J]. 金融研究, 2025, 537(3): 188 -206 .
[8] 贾君怡, 潘慧峰, 宋敏杰. 资管产品估值规范如何影响债券市场效率?——来自资管新规的证据[J]. 金融研究, 2025, 538(4): 39 -56 .
[9] 王修华, 彭德荣, 赵亚雄. 农信机构数字化转型能否促进双重目标兼顾?——基于省联社“大平台”模式视角的分析[J]. 金融研究, 2025, 538(4): 75 -94 .
[10] 潘红波, 周颖, 石宇欣. 上市公司壳资源、挤出效应与中小企业银行贷款成本——基于“不允许在创业板借壳上市”的准自然实验[J]. 金融研究, 2025, 538(4): 114 -130 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1