Please wait a minute...
金融研究  2024, Vol. 526 Issue (4): 151-168    
  本期目录 | 过刊浏览 | 高级检索 |
社会网络与中国家庭金融脆弱性
姚健, 臧旭恒, 周博文
山东大学经济学院,山东济南 250100
Social Networks and Household Financial Vulnerability in China
YAO Jian, ZANG Xuheng, ZHOU Bowen
School of Economics, Shandong University
下载:  PDF (553KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 家庭金融脆弱性是家庭金融风险的先行性指标。本文采用中国家庭金融调查(CHFS)面板数据,考察社会网络对家庭金融脆弱性的影响及其作用机制。研究发现,社会网络显著降低了家庭金融脆弱性,对于物质资本和人力资本相对不足的家庭而言,这种作用更为明显。机制分析表明,社会网络有助于缓解流动性约束、促进风险分担和增进信息传递,进而降低家庭金融脆弱性。此外,社会网络在降低家庭金融脆弱性方面发挥了与正规金融制度互补的作用。本文的研究,为理解社会资本在应对家庭金融风险中的作用提供了微观证据,丰富了家庭金融相关文献,为提升家庭应对金融风险能力、强化金融体系稳定性提供了有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚健
臧旭恒
周博文
关键词:  社会网络  家庭金融脆弱性  家庭金融风险    
Summary:  Effectively preventing and resolving economic and financial risks is one of the major issues of current economic work in China. Among them, household financial risks are an important component. Analyzing the household financial vulnerability is an important point for studying how to prevent and resolve household financial risks. Therefore, exploring effective ways to reduce household financial vulnerability is particularly important. Concurrently, the role of social networks as informal institutions in the economy and society has always been a hot topic in social science research. Especially for developing countries like China, social networks have a significant impact on people's economic behavior and daily life. Does social network relationship affect household financial vulnerability? If there is a significant impact, what is the specific mechanism? Is there heterogeneity due to differences in other factors? These questions are worth exploring in depth.
This paper uses data from the China Household Finance Survey (CHFS) in 2017 and 2019 to examine the impact and mechanism of social networks on household financial vulnerability. The research conclusion is as follows: Firstly, social networks significantly reduce household financial vulnerability. This conclusion still holds after a series of robustness tests, such as overcoming endogeneity, replacing independent variables and dependent variables, replacing instrumental variables, and replacing samples. Secondly, the mechanism by which social networks affect household financial vulnerability is mainly reflected in three aspects: alleviating liquidity constraints, playing a role in risk sharing, and promoting information transmission. Thirdly, social networks have a more significant impact on the financial vulnerability of rural, low-income, low net assets, elderly, low education levels, and risk-averse households. These households have relatively scarce material or human capital. It can be seen that social networks have inclusive characteristics for the healthy and sustainable development of family economy. Fourthly, social networks, as an informal institution, play a complementary role with formal finance in reducing household financial vulnerability.
This paper provides the following insights. Firstly, it is necessary to pay further attention to preventing and resolving household financial risks. Social networks are one of the effective ways to reduce household financial vulnerability. Policy makers can encourage the construction of social networks and better reflect the positive role of social networks. Secondly, to leverage the complementary effects of informal social networks and formal institutions for different groups, and jointly build a household financial safety net. Thirdly, increasing household income and asset levels through multiple channels, constructing a multi-level social security system, and improving credit and insurance markets can help enhance households' risk tolerance. This paper provides experience for other countries, especially developing countries, to pay attention to and reduce household financial vulnerability.
The main contributions of this paper are in three aspects. Firstly, we use the Extended Linear Expenditure System (ELES) to measure household basic living expenses and calibrate existing financial margin indicators to more accurately measure household financial vulnerability. Secondly, we analyze effective ways to address household financial vulnerability from the perspective of social networks. This provides micro evidence for understanding the role of social capital in addressing household financial risks. This not only enriches the relevant research on household finance, but also provides useful insights for improving the ability of households to cope with financial risks. Thirdly, we systematically identify the mechanisms by which social networks reduce household financial vulnerability in terms of alleviating liquidity constraints, sharing risks, and enhancing information transmission. Finally, we explore the different impacts of heterogeneity in urban and rural areas, household characteristics, and head of household characteristics. This provides a reference basis for preventing and resolving household financial risks, improving the stability of the financial system, and helping to safeguard and improve people's livelihoods, continuously enhancing their well-being.
Keywords:  Social Networks    Household Financial Vulnerability    Household Financial Risk
JEL分类号:  D14   G20   Z13  
基金资助: *本文感谢国家社会科学基金重大项目(21&ZD088)和国家资助博士后研究人员计划(GZC20231493)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  周博文,博士研究生,山东大学经济学院,E-mail:zbowen1019@163.com.   
作者简介:  姚 健,经济学博士,博士后,山东大学经济学院,E-mail:yaojian0628@163.com.
臧旭恒,经济学博士,教授,山东大学经济学院,E-mail:xhzang@sdu.edu.cn.
引用本文:    
姚健, 臧旭恒, 周博文. 社会网络与中国家庭金融脆弱性[J]. 金融研究, 2024, 526(4): 151-168.
YAO Jian, ZANG Xuheng, ZHOU Bowen. Social Networks and Household Financial Vulnerability in China. Journal of Financial Research, 2024, 526(4): 151-168.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V526/I4/151
[1]邓创和谢敬轩,2021,《中国的金融稳定及其与经济、金融周期波动的关联动态》,《国际金融研究》第7期,第13~23页。
[2]封思贤和那晋领,2020,《P2P借款人的定价偏差与被动违约风险——基于“人人贷”数据的分析》,《金融研究》第3期,第134~151页。
[3]甘犁、赵乃宝和孙永智,2018,《收入不平等、流动性约束与中国家庭储蓄率》,《经济研究》第12期,第34~50页。
[4]郭峰、王靖一、王芳、孔涛、张勋和程志云,2020,《测度中国数字普惠金融发展:指数编制与空间特征》,《经济学(季刊)》第4期,第1401~1418页。
[5]郭士祺和梁平汉,2014,《社会互动、信息渠道与家庭股市参与——基于2011年中国家庭金融调查的实证研究》,《经济研究》第S1期,第116~131页。
[6]胡枫和陈玉宇,2012,《社会网络与农户借贷行为——来自中国家庭动态跟踪调查(CFPS)的证据》,《金融研究》第12期,第178~192页。
[7]胡金焱和张博,2014,《社会网络、民间融资与家庭创业——基于中国城乡差异的实证分析》,《金融研究》第10期,第148~163页。
[8]李波和朱太辉,2022,《债务杠杆、财务脆弱性与家庭异质性消费行为》,《金融研究》第3期,第20~40页。
[9]刘波、王修华和胡宗义,2020,《金融素养是否降低了家庭金融脆弱性?》,《南方经济》第10期,第76~91页。
[10]马光荣和杨恩艳,2011,《社会网络、非正规金融与创业》,《经济研究》第3期,第83~94页。
[11]田子方、李涛和伏霖,2022,《家庭关系与居民消费》,《经济研究》第6期,第173~190页。
[12]王春超和袁伟,2016,《社会网络、风险分担与农户储蓄率》,《中国农村经济》第3期,第25~35页。
[13]徐浩和朱小梅,2023,《金融韧性问题研究进展》,《经济学动态》第11期,第108~124页。
[14]徐佳、李冠华和齐天翔,2022,《中国家庭偿债能力:衡量与影响因素》,《金融研究》第11期,第98~116页。
[15]杨汝岱、陈斌开和朱诗娥,2011,《基于社会网络视角的农户民间借贷需求行为研究》,《经济研究》第11期,第116~129页。
[16]易行健、张波、杨汝岱和杨碧云,2012,《家庭社会网络与农户储蓄行为:基于中国农村的实证研究》,《管理世界》第5期,第43~51页。
[17]殷剑峰和王增武,2018,《分配差距扩大、信用扩张和金融危机——关于美国次贷危机的理论思考》,《经济研究》第2期,第50~64页。
[18]尹志超、吴子硕和蒋佳伶,2022,《移动支付对中国家庭储蓄率的影响》,《金融研究》第9期,第57~74页。
[19]岳崴、王雄和张强,2021,《健康风险、医疗保险与家庭财务脆弱性》,《中国工业经济》第10期,第175~192页。
[20]臧旭恒和孙文祥,2003,《城乡居民消费结构:基于ELES模型和AIDS模型的比较分析》,《山东大学学报(哲学社会科学版)》第6期,第122~126页。
[21]张冀、史晓和曹杨,2022,《动态健康冲击下的中老年家庭金融风险评估》,《财经研究》第2期,第153~168页。
[22]张正平和陈杨,2023,《人口老龄化对家庭金融脆弱性的影响——基于CFPS2010—2018微观数据的实证检验》,《国际金融研究》第6期,第26~37页。
[23]章元和黄露露,2022,《社会网络、风险分担与家庭储蓄率——来自中国城镇居民的证据》,《经济学(季刊)》第1期,第87~108页。
[24]赵亚雄和王修华,2022,《数字金融、家庭相对收入及脆弱性——兼论多维“鸿沟”的影响》,《金融研究》第10期,第77~97页。
[25]Ali, L., M. K. N. Khan, and H. Ahmad, 2020, “Financial Fragility of Pakistani Household”, Journal of Family and Economic Issues,41(3): 572~590.
[26]Ambrus, A., M. Mobius, and A. Szeidl, 2014, “Consumption Risk-sharing in Social Networks”, American Economic Review, 104(1): 149~182.
[27]Ampudia, M, H. Van Vlokhoven, and D. Z·ochowski, 2016, “Financial Fragility of Euro Area Households”, Journal of Financial Stability, 27: 250~262.
[28]Anderloni, L., E. Bacchiocchi, and D. Vandone, 2012, “Household Financial Vulnerability: An Empirical Analysis”, Research in Economics, 66(3): 284~296.
[29]Bailey, M., R. Cao, T. Kuchler, and J. Stroebel, 2018, “The Economic Effects of Social Networks: Evidence from the Housing Market”, Journal of Political Economy, 126(6): 2224~2276.
[30]Bettocchi, A., E. Giarda, C. Moriconi, F. Orsini, and R. Romeo, 2018, “Assessing and Predicting Financial Vulnerability of Italian Households: A Micro-macro Approach”, Empirica, 45(3): 587~605.
[31]Brunetti, M., E. Giarda, and C. Torricelli, 2016, “Is Financial Fragility a Matter of Illiquidity? An Appraisal for Italian Households”, Review of Income and Wealth, 62(4): 628~649.
[32]Daud, S. N. M., A. Marzuki, N. Ahmad, and Z. Kefeli, 2019, “Financial Vulnerability and Its Determinants: Survey Evidence from Malaysian Households”, Emerging Markets Finance and Trade, 55(9): 1991~2003.
[33]Dershem, L., and D. Gzirishvili, 1998, “Informal Social Support Networks and Household Vulnerability: Empirical Findings from Georgia”, World Development, 26(10): 1827~1838.
[34]Fafchamps, M, 2011, “Risk Sharing between Households”, Handbook of Social Economics, 1: 1255~1279.
[35]Jiang, M., R. Sun, and B. Zhang, 2022, “Social Networks and Household Financial Decisions: Evidence from China”, Journal of Applied Economics, 25(1): 58~92.
[36]Lluch, C., and R. Williams, 1975, “Consumer Demand Systems and Aggregate Consumption in the USA: An application of the Extended Linear Expenditure System”, Canadian Journal of Economics, 8(1): 49~66.
[37]Lusardi, A., D. J. Schneider, and P. Tufano, 2011, “Financially Fragile Households: Evidence and Implications”, Brookings Papers on Economic Activity, 1: 83~134.
[38]Noerhidajati, S, A. B. Purwoko, H. Werdaningtyas, A. I. Kamil, and T. Dartanto, 2021, “Household Financial Vulnerability in Indonesia: Measurement and Determinants”, Economic Modelling, 96: 433~444.
[1] 黄祖辉, 宋文豪, 叶春辉. 数字普惠金融对新型农业经营主体创立的影响与机理——来自中国1845个县域的经验证据[J]. 金融研究, 2023, 514(4): 92-110.
[2] 李凤, 吴卫星, 李东平, 路晓蒙. 投资者教育发挥作用了吗?——来自公募基金个人投资者调查数据的证据[J]. 金融研究, 2023, 511(1): 150-168.
[3] 陈泽阳, 刘玉珍, 孟涓涓. 框架效应与贷款决策:一项金融素养的实验研究[J]. 金融研究, 2022, 510(12): 130-148.
[4] 徐佳, 李冠华, 齐天翔. 中国家庭偿债能力:衡量与影响因素[J]. 金融研究, 2022, 509(11): 98-116.
[5] 尹志超, 吴子硕, 蒋佳伶. 移动支付对中国家庭储蓄率的影响[J]. 金融研究, 2022, 507(9): 57-74.
[6] 李政, 李鑫. 数字普惠金融与未预期风险应对:理论与实证[J]. 金融研究, 2022, 504(6): 94-114.
[7] 唐棣, 金星晔. 投资者亲社会偏好与风险投资[J]. 金融研究, 2022, 503(5): 114-132.
[8] 李波, 朱太辉. 债务杠杆、财务脆弱性与家庭异质性消费行为[J]. 金融研究, 2022, 501(3): 20-40.
[9] 郑路, 徐旻霞. 传统家庭观念抑制了城镇居民商业养老保险参与吗?———基于金融信任与金融素养视角的实证分析[J]. 金融研究, 2021, 492(6): 133-151.
[10] 李丁, 丁俊菘, 马双. 社会互动对家庭商业保险参与的影响——来自中国家庭金融调查(CHFS)数据的实证分析[J]. 金融研究, 2019, 469(7): 96-114.
[11] 周广肃, 王雅琦. 住房价格、房屋购买与中国家庭杠杆率[J]. 金融研究, 2019, 468(6): 1-19.
[12] 徐丽鹤, 吕佳玮, 何青. 信用卡、风险应对与城镇家庭股市参与[J]. 金融研究, 2019, 465(3): 149-167.
[13] 周弘, 张成思, 何启志. 中国居民资产配置效率的门限效应研究:金融约束视角[J]. 金融研究, 2018, 460(10): 55-71.
[14] 云妍, 陈志武, 林展. 清代官绅家庭资产结构一般特征初探——以抄产档案为中心的研究[J]. 金融研究, 2018, 452(2): 61-81.
[15] 徐佳, 谭娅. 中国家庭金融资产配置及动态调整[J]. 金融研究, 2016, 438(12): 95-110.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1