Please wait a minute...
金融研究  2024, Vol. 523 Issue (1): 19-37    
  本期目录 | 过刊浏览 | 高级检索 |
逆风前行:台风灾害与银行风险行为
吕勇斌, 李志生, 郭懿晨
中南财经政法大学金融学院,湖北武汉 430073;西南财经大学金融学院,四川成都 610074
Marching Against the Wind: Typhoon Disasters and Banks' Risky Behaviors
LV Yongbin, LI Zhisheng, GUO Yichen
School of Finance, Zhongnan University of Economics and Law; School of Finance, Southwestern University of Finance and Economics
下载:  PDF (634KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 台风作为一种强度大、高频发的极端天气,不仅对经济活动造成巨大破坏,也会对金融部门产生强烈冲击,引发一系列连锁反应和反馈行为。本文以2010—2019年台风事件作为自然实验,选取295家地方性商业银行作为研究对象,匹配3452家A股上市公司的经营数据,运用风场模型构建城市级台风破坏指标,从企业经营渠道探讨台风灾害对银行风险行为的影响。研究发现,台风灾害导致银行信贷违约风险显著上升,促使银行提高风险承担水平。机制分析表明,台风灾害降低了企业生产效率、造成了企业固定资产损失,由此导致当地银行信用违约风险上升。进一步分析表明,台风灾害影响金融机构的传导过程并非是单向的。银行信贷违约风险的上升降低了银行风险偏好,引发更为谨慎的信贷决策,传导至企业层面,使得企业融资成本上升,最终放大台风灾害对整个经济金融活动的影响。本文为银行气候风险治理提供了新的经验证据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕勇斌
李志生
郭懿晨
关键词:  台风灾害  银行风险行为  生产效率  资产损失  融资约束    
Summary:  Climate change has become a major challenge to all of humankind, with profound impacts on the financial and economic system. As an extreme weather event occurring with high frequency and intensity, typhoons not only cause great damage to economic activities but also have a powerful impact on the financial sector, which in turn triggers a series of chain reactions and feedback behaviors. The literature on the impact of typhoon disasters on banks' risk behavior is still insufficient. Researchers face certain difficulties when applying existing climate risk indicators to study typhoon disasters. Additionally, the literature on typhoon research has tended to focus on the post-disaster resumption problems of real enterprises and the operation of the capital market, with less research on the impact on the banking sector, which is an important participant in economic operations. China's financial system is still dominated by the bank-led indirect financing system, and commercial banks are the first to bear the brunt of climate disasters.
In view of this, this paper empirically examines the impact of typhoon disasters on banks' risk behavior by taking 295 local commercial banks in China during 2010-2019 as research objects, matching the operational data of 3452 A-share listed companies, and combining these with the Holland wind field model to calculate a typhoon destructive power index at the city level. The paper also examines the mediating effects of corporate total factor productivity and corporate fixed asset losses, and it further analyzes the resulting series of chain reactions and feedback behaviors, including changes in banks' risk appetite and credit decisions. This paper's empirical analyses yield several findings. First, typhoon disasters significantly raise banks' non-performing loan ratios (NPLRs) and increase banks' credit risk, and they raise banks' NPLRs significantly more in coastal areas than in inland areas. Second, the rise in corporate fixed asset losses and the decline in corporate total factor productivity levels are important channels through which typhoon disasters affect banks' NPLR ratios. Third, further analyses show that the process by which typhoon disasters' effect on financial institutions is transmitted is not monolithic. Typhoon disasters first hit the real economy, then are transmitted to the financial system, and finally swing back to the real economy. Specifically, after being affected by a typhoon disaster, the production and operation of enterprises fall into “economic difficulties,” which are transmitted to the bank level, making banks' NPLR increase (i.e., an increase in passive risk-taking). This further affects banks' future credit decision-making, such as causing them to tighten the extent of credit and reduce their appetite for risk (i.e., a decrease in active risk-taking). This, in turn, feeds back to the enterprise level, increasing the cost of financing for enterprises and ultimately magnifying the impact of the typhoon disaster on overall economic and financial activities.
The possible innovations of this paper are as follows. First, the paper empirically tests the impact of typhoon disasters on the credit risk of China's commercial banks by using indicators of typhoons' destructive force, and verifies the hypothetical mechanism by which typhoon disasters affect bank credit risk. This enriches research on climate finance and the empirical literature on the association between bank risk and other climatic disasters in China. Second, this paper analyzes the “feedback loop” characteristic of typhoon disasters, i.e., the series of feedback behaviors that are brought about by typhoon disasters and impact bank risk, which provides theoretical support for the financial industry to assess climate risk and a reference for the design of subsequent related research. Finally, this paper calculates the asset loss caused by typhoon disasters to enterprises through a wind field model, which can provide a scientific basis for financial institutions to make future lending decisions and help avoid the influence of pro-cyclical thinking.
This study provides new empirical evidence for banks' climate risk governance. The policy implication of this paper is clear: it is important to pay attention to the banking risk and financial stability issues arising from climate change such as typhoon disasters. Considering the possibility of typhoon attacks in the future, on the one hand, banks and other financial institutions should make good preparations for short-term typhoon-induced credit losses, improve ex-ante collateral prevention preparations, control credit quality in a timely manner, and also strengthen co-operation with insurance companies so as to make preparations for double-insurance of collaterals both ex-ante and ex-post. On the other hand, banks and other financial institutions should incorporate climate risk into risk management and improve the identification and quantification of climate risk, regularly implement climate and environmental risk stress tests, and calculate the probability of default and the default loss rate of lending enterprises under different scenarios, so as to ensure that the financial sector will fully consider the climate and environmental risks.
Keywords:  Typhoon Disaster    Bank Risk Behavior    Production Efficiency    Loss of Assets    Financing Constraints
JEL分类号:  D21   G21   Q54  
基金资助: *本文感谢数字技术与现代金融学科创新引智基地(B21038)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  郭懿晨,博士研究生,中南财经政法大学金融学院,E-mail: guoyichen@stu.zuel.edu.cn.   
作者简介:  吕勇斌,管理学博士,教授,中南财经政法大学金融学院,E-mail: lvyongbin@zuel.edu.cn.
李志生,哲学博士,教授,西南财经大学金融学院,E-mail: lizs@swufe.edu.cn.
引用本文:    
吕勇斌, 李志生, 郭懿晨. 逆风前行:台风灾害与银行风险行为[J]. 金融研究, 2024, 523(1): 19-37.
LV Yongbin, LI Zhisheng, GUO Yichen. Marching Against the Wind: Typhoon Disasters and Banks' Risky Behaviors. Journal of Financial Research, 2024, 523(1): 19-37.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V523/I1/19
[1]戴亦一、潘越和冯舒,2014,《中国企业的慈善捐赠是一种“政治献金”吗?——来自市委书记更替的证据》,《经济研究》第2期,第74~86页。
[2]方意和陈敏,2019,《经济波动、银行风险承担与中国金融周期》,《世界经济》第2期,第3~25页。
[3]冯根福、郑明波、温军和张存炳,2021,《究竟哪些因素决定了中国企业的技术创新——基于九大中文经济学权威期刊和A股上市公司数据的再实证》,《中国工业经济》第1期,第17~35页。
[4]古志辉和张睿,2021,《台风灾害与股价崩盘风险》,《中国管理科学》第8期,第1~14页。
[5]姜露露、马仁锋和袁海红,2022,《台风灾害经济损失评估研究进展》,《生态科学》第3期,第252~263页。
[6]刘波、王修华和李明贤,2021,《气候变化冲击下的涉农信用风险——基于2010—2019年256家农村金融机构的实证研究》,《金融研究》第12期,第96~115页。
[7]刘秉镰和刘玉海,2011,《交通基础设施建设与中国制造业企业库存成本降低》,《中国工业经济》第5期,第69~79页。
[8]马骏、周月秋和殷红,2018,《金融机构环境风险分析与案例研究》,中国金融出版社,2018年6月第一版。
[9]马正宇和秦放鸣,2021,《气候变化影响金融稳定的传导机制研究》,《金融发展研究》第2期,第35~43页。
[10]潘敏、刘红艳和程子帅,2022,《极端气候对商业银行风险承担的影响——来自中国地方性商业银行的经验证据》,《金融研究》第10期,第39~57页。
[11]潘越、翁若宇和刘思义,2017,《私心的善意:基于台风中企业慈善捐赠行为的新证据》,《中国工业经济》第5期,第133~151页。
[12]李广子和刘力,2009,《债务融资成本与民营信贷歧视》,《金融研究》第12期,第137~150页。
[13]谭林和高佳琳,2020,《气候变化风险对金融体系的作用机理及对策研究》,《金融发展研究》第3期,第13~20页。
[14]孙天琦和苗萌萌,2023,《金融业管理和应对气候风险的思考》,《中国金融》第16期,第12~15页。
[15]王遥和王文蔚,2021,《环境灾害冲击对银行违约率的影响效应研究:理论与实证分析》, 《金融研究》第12期,第38~56页。
[16]许年行和李哲,2016,《高管贫困经历与企业慈善捐赠》,《经济研究》第12期,第133~146页。
[17]于孝建、万梦玥、梁柏淇和肖炜麟,2022,《气候变化、绿色转型与农业贷款不良率——基于压力测试的实证》,《金融监管研究》第8期,第40~57页。
[18]杨万康、尹宝树、伊小飞、杨青莹和施伟勇,2017,《基于Holland风场的台风浪数值计算》,《水利水运工程学报》第4期,第28~34页。
[19]Aguilar-Gomez, S., E. Gutierrez., D. Heres., D. Jaume and M. Tobal, 2024, “Thermal Stress and Financial Distress: Extreme Temperatures and Firms' Loan Defaults in Mexico”, Journal of Development Economics, 168,pp.1~40.
[20]Berg, G. and J. Schrader, 2012, “Access to Credit, Natural Disasters, and Relationship Lending”, Journal of Financial Intermediation, 21(4), pp.549~568.
[21]Boose, E.R., M.I. Serrano and D.R. Foster, 2004, “Landscape and Regional Impacts of Hurricanes in Puerto Rico”, Ecological Monographs, 74 (2), pp.335~352.
[22]Chavaz, M., 2014, “Riders of the Storm-Economic Shock & Bank Lending in a Natural Experiment”, Bank of England Staff Working Paper, No.617.
[23]Dessaint, O. and A. Matray, 2017, “Do Managers Overreact to Salient Risks? Evidence from Hurricane Strikes”, Journal of Financial Economics, 126(1), pp.97~121.
[24]de Roux, N., 2021, “Exogenous Shocks, Credit Reports and Access to Credit: Evidence from Colombian Coffee Producers”, Documento CEDE, No.19769.
[25]Dietz, S., A. Bowen., C. Dixon and P. Gradwell, 2016, “Climate Value at Risk of Global Financial Assets”, Nature Climate Change, 6(7), pp.676~679.
[26]Emanuel, K.A., 2011, “Global Warming Effects on US Hurricane Damage”, Weather, Climate,and Society,3 (4), pp.261~268.
[27]Elliott, R. J. R., Y. Liu., E. Strobl and M. Tong, 2019, “Estimating the Direct and Indirect Impact of Typhoons on Plant Performance: Evidence from Chinese Manufacturers”, Journal of Environmental Economics and Management, 98,pp.1~40.
[28]Gallagher, J. and D. Hartley, 2017, “Household Finance after a Natural Disaster: The Case of Hurricane Katrina”, American Economic Journal: Economic Policy, 9(3), pp.199~228.
[29]Holland, G., 1980, “An Analytic Model of the Wind and Pressure Profiles in Hurricanes”, Monthly Weather Review, 108(8), pp.1212~1218.
[30]Hosono, K., D. Miyakawa and T. Uchino, 2016, “Natural Disasters, Damage to Banks, and Firm Investment”, International Economic Review, 57(4), pp.1335~1370.
[31]Klomp, J., 2014, “Financial Fragility and Natural Disasters: An Empirical Analysis”, Journal of Financial Stability,13, pp.180~192.
[32]Landon-Lane, J., H. Rockoff and R.H. Steckel, 2009, “Droughts, Floods and Financial Distress in the United States”, NBER Working Paper, No. w15596.
[33]Leiter, A. M., H. Oberhofer and P. A. Raschky, 2009, “Creative Disasters? Flooding Effects on Capital, Labor and Productivity Within European Firms”, Environmental & Resource Economics, 43,pp. 333~350.
[34]Noth, F. and U. Schüwer, 2023, “Natural Disasters and Bank Stability: Evidence from the U.S. Financial System”, Journal of Environmental Economics and Management,119, pp.1~20.
[35]Nordhaus, W. D., 2015, The Climate Casino: Risk, Uncertainty, and Economics for a Warming World, Yale University Press.
[36]Noy, I., 2009, “The Macroeconomic Consequences of Disasters”, Journal of Development Economics, 88(2), pp.221~231.
[37]Olley, G. S. and A. Pakes, 1996, “The Dynamics of Productivity in the Telecommunications Equipment Industry”, Econometrica, 64(6), pp.1263~1297.
[38]Paulsen, B. M. and J. L. Schroeder, 2005, “An Examination of Tropical and Extratropical Gust Factors and the Associated Wind Speed Histograms”, Journal of Applied Meteorology, 44(2), pp.270~280.
[39]Rose, A., 2004, “Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation”, in Okuyama Y. and S.E. Chang, 2004, Modeling Spatial and Economic Impacts of Disasters, Heidelberg: Springer Berlin Heidelberg, pp.13~36.
[40]Stenek,V., J. C. Amado and R. Connell, 2011, “Climate Risk and Financial Institutions”, World Bank Group.
[41]Vickery, P.J., P.F. Skerljand and A. C. Steckley, 2000, “Hurricane Wind Field Model for Use in Hurricane Simulations”, Journal of Structural Engineering, 126(10), pp.1203~1221.
[1] 杭静, 申广军. 金融危机后中国制造业部门的配置效率——基于生产网络视角的研究[J]. 金融研究, 2024, 524(2): 57-75.
[2] 吴翌琳, 张旻, 于鸿君. 融资方式与企业二元创新路径选择——基于技术创新与非技术创新视角[J]. 金融研究, 2024, 523(1): 38-55.
[3] 黄卓, 陶云清, 王帅. 社会信用环境改善降低了企业违规吗?——来自“中国社会信用体系建设”的证据[J]. 金融研究, 2023, 515(5): 96-114.
[4] 陈奉功, 张谊浩. 绿色债券发行、企业绿色转型与市场激励效应[J]. 金融研究, 2023, 513(3): 131-149.
[5] 汪建新. ESG活动表现与企业升级[J]. 金融研究, 2023, 521(11): 132-152.
[6] 司登奎, 李小林, 孔东民, 江春. 利率市场化能降低企业营运风险吗?——基于融资约束和企业金融化的双重视角[J]. 金融研究, 2023, 511(1): 113-130.
[7] 申丹琳, 江轩宇. 社会信任与企业劳动投资效率[J]. 金融研究, 2022, 507(9): 152-168.
[8] 金祥义, 张文菲, 施炳展. 绿色金融促进了中国出口贸易发展吗?[J]. 金融研究, 2022, 503(5): 38-56.
[9] 陈泽艺, 李常青, 李宇坤. 对外担保与企业创新投入[J]. 金融研究, 2022, 502(4): 133-150.
[10] 宁博, 潘越, 汤潮. 地域商会有助于缓解企业融资约束吗?——来自A股民营上市企业的证据[J]. 金融研究, 2022, 500(2): 153-170.
[11] 尹洪英, 李闯. 智能制造赋能企业创新了吗?——基于中国智能制造试点项目的准自然试验[J]. 金融研究, 2022, 508(10): 98-116.
[12] 陈诗一, 张建鹏, 刘朝良. 环境规制、融资约束与企业污染减排——来自排污费标准调整的证据[J]. 金融研究, 2021, 495(9): 51-71.
[13] 潘健平, 翁若宇, 潘越. 企业履行社会责任的共赢效应——基于精准扶贫的视角[J]. 金融研究, 2021, 493(7): 134-153.
[14] 张会丽, 赵健宇, 陆正飞. 员工薪酬竞争力与上市公司员工持股[J]. 金融研究, 2021, 487(1): 169-187.
[15] 刘晓光, 刘嘉桐. 劳动力成本与中小企业融资约束[J]. 金融研究, 2020, 483(9): 117-135.
[1] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[2] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[3] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[4] 吴超鹏, 张媛. 风险投资对上市公司股利政策影响的实证研究[J]. 金融研究, 2017, 447(9): 178 -191 .
[5] 张浩, 易行健, 周聪. 房产价值变动、城镇居民消费与财富效应异质性——来自微观家庭调查数据的分析[J]. 金融研究, 2017, 446(8): 50 -66 .
[6] 黄宪, 黄彤彤. 论中国的“金融超发展”[J]. 金融研究, 2017, 440(2): 26 -41 .
[7] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[8] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[9] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83 -98 .
[10] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1