Please wait a minute...
金融研究  2023, Vol. 518 Issue (8): 37-54    
  本期目录 | 过刊浏览 | 高级检索 |
中国商业银行运营效率研究 ——基于多阶段合作型网络DEA的实证分析
朱宁, 曾恒煜, 于之倩
广州大学经济与统计学院,广东广州 510006;
厦门大学经济学院,福建厦门 361005
Operational Efficiency of Chinese Commercial Banks: An Empirical Analysis Based on a Multi-stage Cooperative Network Data Envelopment Analysis Approach
ZHU Ning, ZENG Hengyu, YU Zhiqian
School of Economics and Statistics, Guangzhou University;
School of Economics, Xiamen University
下载:  PDF (1927KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 高效率的运营结构是商业银行内源性增长和可持续发展的关键因素,对于提高商业银行的业务协同和经营韧性具有重要作用。为了有效改善金融供给能力,本文构建一种具有合作型的可加性SBM网络DEA模型,使用108家我国商业银行样本尝试打开银行运营“黑箱”,并基于结构分解深度评价我国商业银行的运营效率。本文将商业银行的整体运营过程划分为初始资金使用、筹资及中间业务开展、资金使用和利润产出四个子阶段,进一步把利润产出阶段分为基于利息收入和其他非利息收入两个平行子阶段。研究结果显示,我国商业银行的运营过程总体上存在各子阶段效率不平衡、相邻子阶段运营不协调等结构性失衡问题,其中,商业银行在初始资金使用以及资金使用阶段表现良好,但在利润产出阶段有待改善。从个体指标效率来看,银行各子阶段之间不协调导致员工、分支机构、存款和盈利资产等要素错配。此外,本文进一步测算商业银行的规模效率,发现国有大型银行的规模效率低于其他类型银行,并且在研究期间呈下降趋势。最后,本文就改善我国商业银行业务结构失衡问题提出了政策建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱宁
曾恒煜
于之倩
关键词:  网络DEA  运营结构  “黑箱”效率  商业银行    
Summary:  In recent decades, the Chinese banking sector has experienced substantial and rapid growth, especially in terms of total bank assets. However, there remains a gap between the current situation of commercial banks and the requirements for achieving the high-quality development of the banking system in various respects, including innovation ability and service quality. This situation suggests the presence of deep-seated problems related to structural imbalances and financial resource misallocation in Chinese commercial banks. Therefore, it is necessary to evaluate the performance of the internal operations of banks using a scientific approach.
The conventional data envelopment analysis (DEA) approach treats the operational processes of commercial banks as a “black box,” lacking the capability to reveal complicated internal operational processes by which inputs become outputs. This limitation persisted until the development of the network DEA approach. Although numerous studies have used the network DEA approach to examine the efficiency of Chinese commercial banks, they typically adopt independent or relational constraints when evaluating the relationship between successive sub-stages. These approaches fail to capture potential conflicts or tend to generate the wastes of intermediates. In addition, most of the studies decompose the internal operational structure of commercial banks into two sub-stages, raising funds and using funds, or only focus on a single type of business, such as assets, liability, and off-balance sheet activities. Although a simplified model offers advantages in terms of calculation and operability, it may not be able to fully and effectively evaluate the operational efficiency of commercial banks that have complex operational structure in reality.
To fill the aforementioned research gap, this paper uses a cooperative additive slacks-based measure (SBM) network DEA model that effectively integrates the background of financial structural reform. We include 108 Chinese commercial banks from 2013 to 2019 as samples to evaluate their internal operational efficiency based on the perspective of structural decomposition. The operation process of a commercial bank is divided into four sub-stages: using initial funds, raising funds and conducting intermediate business, using funds, and generating profits. The last stage is further subdivided into two parallel stages, accounting for the generation of interest income and other non-interest income, respectively. Our findings reveal the presence of structural imbalances in the operation process of Chinese commercial banks, including uneven efficiency in each sub-stage and uncoordinated operation in adjacent sub-stages. Specifically, commercial banks perform well in two stages, using initial funds and using funds, but require enhancements in the profit generation stage. In terms of the efficiency of input, output, and intermediate products, the input efficiency of fixed assets and the output efficiency of non-performing loans and other non-interest net incomes are lower. The lack of coordination between the sub-stages of banks leads to misallocations of employees, branches, deposits, earning assets and other factors. Comparing the efficiency of various types of commercial banks, we find that foreign banks exhibit the highest overall efficiency, with relatively balanced efficiencies across sub-stages. However, the efficiency of individual sub-stages fluctuates considerably. Although large state-owned banks perform well in the initial fund raising stage, this is at the expense of generating redundant employees and branches. Moreover, joint-stock commercial banks allocate more resources to traditional business, resulting in some redundancy in deposits and earning assets. Further, our scale efficiency analysis reveals that the scale efficiency of large state-owned banks is lower than that of other types of banks, with a downward trend observed during the study period.
On the basis of the findings, we propose three policy implications. First, with the deepening of financial structural reform, commercial banks are encouraged to improve their operational efficiency, weak business links, and financial supply capacity. Second, through scientific and technological empowerment and platform construction, the current operational structure of commercial banks can be reformed by optimizing intermediate products and controlling the cost of fixed assets and the risk of non-performing loans. Such reforms would enable the rational allocation of resources and enhance the stability of banks' internal structure. Third, to contribute to financial structural reform, different types of banks should tailor their efforts to optimize their operational structures and improve operational performance based on their specific shortcomings. Encouraging resource-sharing among different types of banks to facilitate mutual learning and improve overall efficiency, sub-stage efficiency, and performance stability is recommended.
Keywords:  Network DEA    Operational Structure    “Black Box” Efficiency    Commercial Banks
JEL分类号:  C61   D24   G21  
基金资助: * 本文感谢国家自然科学基金项目(72073046,71973148)、国家社会科学基金项目(19CJY061)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  于之倩,经济学博士,副教授,广州大学经济与统计学院,E-mail:yzq_8866@163.com.   
作者简介:  朱 宁,经济学博士,副教授,广州大学经济与统计学院,E-mail:znzy1986@163.com.
曾恒煜,博士研究生,厦门大学经济学院,E-mail:hengyu_zeng@163.com.
引用本文:    
朱宁, 曾恒煜, 于之倩. 中国商业银行运营效率研究 ——基于多阶段合作型网络DEA的实证分析[J]. 金融研究, 2023, 518(8): 37-54.
ZHU Ning, ZENG Hengyu, YU Zhiqian. Operational Efficiency of Chinese Commercial Banks: An Empirical Analysis Based on a Multi-stage Cooperative Network Data Envelopment Analysis Approach. Journal of Financial Research, 2023, 518(8): 37-54.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V518/I8/37
[1]陈小宪,2003,《重塑商业银行长期发展模式——追求长期稳定盈利,彻底摒弃单纯规模扩张》,《金融研究》第12期,第19~27页。
[2]李浩,2005,《股份制商业银行发展战略研究》,《金融研究》第1期,第82~90页。
[3]李宁果,2021,《商业银行非利息收入、收入结构多元化与经营绩效》,《金融监管研究》第10期,第76~96页。
[4]李丽芳、谭政勋和叶礼贤,2021,《改进的效率测算模型、影子银行与中国商业银行效率》,《金融研究》第10期,第98~116页。
[5]李琴和裴平,2021,《银行系金融科技发展与商业银行经营效率——基于文本挖掘的实证检验》,《山西财经大学学报》第11期,第42~56页。
[6]盛斌和王浩,2022,《银行分支机构扩张与企业出口国内附加值率——基于金融供给地理结构的视角》,《中国工业经济》第2期,第99~117页。
[7]周逢民、张会元、周海和孙佰清,2010,《基于两阶段关联DEA模型的我国商业银行效率评价》,《金融研究》第11期,第169~179页。
[8]周汝卓,2013,《我国银行业经营效率的实证研究》,《统计与决策》第9期,第162~165页。
[9]朱宁、梁林、沈智扬和杜文洁,2018,《经济新常态背景下中国商业银行内生性效率变化及分解》,《金融研究》第7期,第108~123页。
[10]朱宁、刘伟其、于之倩和王兵,2021,《中国银行业结构性全要素生产率增长研究》,《金融研究》第7期,第1~18页。
[11]Avkiran, N. K., 1999, “The Evidence on Efficiency Gains: The Role of Mergers and the Benefits to the Public”, Journal of Banking & Finance, 23, pp. 991~1013.
[12]Benston, G. J., 1965, “Branch Banking and Economies of Scale”, Journal of Finance, 20(2), pp. 312~331.
[13]Boussemart, J.-P., H. Heleu, Z.-Y. Shen, M. Vardanyan and N. Zhu, 2019, “Decomposing Banking Performance into Economic and Credit Risk Efficiencies”, European Journal of Operational Research, 277(2), pp. 719~726.
[14]Chen, K. and J. Zhu, 2020, “Additive Slacks-based Measure: Computational Strategy and Extension to Network DEA”, Omega, 91, 102022.
[15]Cooper, W. W., L. M. Seiford and K. Tone, 2007, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software (2nd Edition), New York: Springer Science+Business Media LLC.
[16]Färe, R. and S. Grosskopf, 1996, “Productivity and Intermediate Products: A Frontier Approach”, Economics Letters, 50, pp. 65~70.
[17]Färe, R. and S. Grosskopf, 2000, “Network DEA”, Socio-Economic Planning Sciences, 34, pp. 35~49.
[18]Fukuyama, H. and R. Matousek, 2017, “Modelling Bank Performance: A Network DEA Approach”, European Journal of Operational Research, 259, pp. 721~732.
[19]Fukuyama, H. and Y. Tan, 2022, “Implementing Strategic Disposability for Performance Evaluation: Innovation, Stability, Profitability and Corporate Social Responsibility in Chinese Banking”, European Journal of Operational Research, 296, pp. 652~668.
[20]Kao, C., 2009, “Efficiency Decomposition in Network Data Envelopment Analysis: A Relational Model”, European Journal of Operational Research, 192, pp. 949~962.
[21]Kao, C., 2014a, “Network Data Envelopment Analysis: A Review”, European Journal of Operational Research, 239, pp. 1~16.
[22]Kao, C., 2014b, “Efficiency Decomposition for General Multi-stage Systems in Data Envelopment Analysis”, European Journal of Operational Research, 232, pp. 117~124.
[23]Kao, C., 2018, “A Classification of Slacks-based Efficiency Measures in Network Data Envelopment Analysis with an Analysis of the Properties Possessed”, European Journal of Operational Research, 270, pp. 1109~1121.
[24]Matthews, K., 2013, “Risk Management and Managerial Efficiency in Chinese Banks: A Network DEA Framework”, Omega, 41, pp. 207~215.
[25]Sealey, C. W. and J. T. Lindley, 1977, “Inputs, Outputs and a Theory of Production and Cost at Depository Financial Institutions”, Journal of Finance, 32(4), pp. 1251~1266.
[26]Tone, K. and M. Tsutsui, 2009, “Network DEA: A Slacks-based Measure Approach”, European Journal of Operational Research, 197, pp. 243~252.
[27]Tone, K., T. S. Chang, and C. H. Wu, 2020, “Handling Negative Data in Slacks-based Measure Data Envelopment Analysis Models”, European Journal of Operational Research, 282, pp. 926~935.
[28]Wang, K., W. Huang, J. Wu, and Y. N. Liu, 2014, “Efficiency Measures of the Chinese Commercial Banking System Using an Additive Two-stage DEA”, Omega, 44, pp. 5~20.
[29]Zhou, X., Z. Xu, J. Chai, L. Yao, S. Wang and B. Lev, 2019, “Efficiency Evaluation for Banking Systems Under Uncertainty: A Multi-period Three-stage DEA Model”, Omega, 85, pp. 68~82.
[30]Zhu, N., Y.-R. Wu, B. Wang and Z.-Q. Yu, 2019, “Risk Preference and Efficiency in Chinese Banking”, China Economic Review, 53, pp. 324~341.
[1] 郭杰, 饶含. 商业银行债券融资与货币政策传导[J]. 金融研究, 2023, 515(5): 38-57.
[2] 张琳, 廉永辉, 方意. 政策连续性与商业银行系统性风险[J]. 金融研究, 2022, 503(5): 95-113.
[3] 潘敏, 刘红艳, 程子帅. 极端气候对商业银行风险承担的影响——来自中国地方性商业银行的经验证据[J]. 金融研究, 2022, 508(10): 39-57.
[4] 邓伟, 宋敏, 刘敏. 借贷便利创新工具有效影响了商业银行贷款利率吗?[J]. 金融研究, 2021, 497(11): 60-78.
[5] 李丽芳, 谭政勋, 叶礼贤. 改进的效率测算模型、影子银行与中国商业银行效率[J]. 金融研究, 2021, 496(10): 98-116.
[6] 丁宁, 任亦侬, 左颖. 绿色信贷政策得不偿失还是得偿所愿?——基于资源配置视角的PSM-DID成本效率分析[J]. 金融研究, 2020, 478(4): 112-130.
[7] 马理, 何云, 牛慕鸿. 对外开放是否导致银行业的风险上升?——基于外资持股比例与海外资产占比的实证检验[J]. 金融研究, 2020, 478(4): 91-111.
[8] 吕朝凤, 毛霞. 地方金融发展能够影响FDI的区位选择吗?——一个基于城市商业银行设立的准自然实验[J]. 金融研究, 2020, 477(3): 58-76.
[9] 熊启跃, 王书朦. 负利率对银行净息差影响机制研究——基于欧洲主要上市银行的经验证据[J]. 金融研究, 2020, 475(1): 110-129.
[10] 祝继高, 岳衡, 饶品贵. 地方政府财政压力与银行信贷资源配置效率——基于我国城市商业银行的研究证据[J]. 金融研究, 2020, 475(1): 88-109.
[11] 张大永, 张志伟. 竞争与效率——基于我国区域性商业银行的实证研究[J]. 金融研究, 2019, 466(4): 111-129.
[12] 杨凯生, 刘瑞霞, 冯乾. 《巴塞尔III最终方案》的影响及应对[J]. 金融研究, 2018, 452(2): 30-44.
[13] 王倩, 赵铮. 同业融资视角下的商业银行杠杆顺周期性[J]. 金融研究, 2018, 460(10): 89-105.
[14] 祝继高, 李天时, 尤可畅. 房地产价格波动与商业银行贷款损失准备——基于中国城市商业银行的实证研究[J]. 金融研究, 2017, 447(9): 83-98.
[15] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83-98.
[1] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[2] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[3] 刘啟仁, 黄建忠. 人民币汇率变动与出口企业研发[J]. 金融研究, 2017, 446(8): 19 -34 .
[4] 康书隆, 余海跃, 刘越飞. 住房公积金、购房信贷与家庭消费——基于中国家庭追踪调查数据的实证研究[J]. 金融研究, 2017, 446(8): 67 -82 .
[5] 茅锐. 企业创新、生产力进步与经济收敛:产业集聚的效果[J]. 金融研究, 2017, 446(8): 83 -99 .
[6] 孟庆斌, 荣晨. 中国房地产价格泡沫研究——基于马氏域变模型的实证分析[J]. 金融研究, 2017, 440(2): 101 -116 .
[7] 张程, 范立夫. 大宗商品价格影响与货币政策权衡——基于石油的金融属性视角[J]. 金融研究, 2017, 441(3): 72 -85 .
[8] 王姝勋, 方红艳, 荣昭. 期权激励会促进公司创新吗?——基于中国上市公司专利产出的证据[J]. 金融研究, 2017, 441(3): 176 -191 .
[9] 邵全权, 王博, 柏龙飞. 风险冲击、保险保障与中国宏观经济波动[J]. 金融研究, 2017, 444(6): 1 -16 .
[10] 闫海洲, 陈百助. 气候变化、环境规制与公司碳排放信息披露的价值[J]. 金融研究, 2017, 444(6): 142 -158 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1