Please wait a minute...
金融研究  2023, Vol. 522 Issue (12): 1-19    
  本期目录 | 过刊浏览 | 高级检索 |
老龄化与“高TFP贡献率、低增长”问题
刘哲希, 王兆瑞, 吴韬
对外经济贸易大学国际经济贸易学院,北京 100029;
中国人民大学经济学院,北京 100872
Aging and the Issue of High Total Factor Productivity Contribution Rates but Low Growth
LIU Zhexi, WANG Zhaorui, WU Tao
School of International Trade and Economics, University of International Business and Economics;
School of Economics, Renmin University of China
下载:  PDF (612KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 从国际经验看,老龄化程度较高的国家,全要素生产率(TFP)对经济增长的贡献率往往较高。这容易使各界产生以TFP为主导的增长方式能有效应对老龄化的认识误区。基于对全球90个经济体1961—2019年TFP贡献率的测算,本文实证检验了老龄化、TFP贡献率与经济增长之间的关系。第一,老龄化率与TFP贡献率呈现正相关性,但TFP贡献率上升主要源于传统动力过快下滑带来的“被动上升”,并不意味着老龄化进程中TFP对经济推动作用显著增强。第二,随着老龄化率上升,TFP贡献率上升对经济增长的促进作用会显著减弱,剔除TFP贡献率“被动上升”影响后,该结论依然成立。这表明,一个经济体过度依靠提升TFP的方式应对老龄化,容易出现“高TFP贡献率、低增长”问题。第三,相比于以TFP占主导的增长方式,TFP等新动力与资本和劳动等传统动力并重的增长方式能更好地应对老龄化,使老龄化对经济增长的负向作用不显著。现阶段中国TFP对经济增长贡献率偏低,因此需要着力提升TFP,但不能忽视传统动力的下滑。要将创新驱动发展战略和扩大内需战略有机结合,构建新动力与传统动力相互牵引、相互促进的增长方式,从而更好地实现人口规模巨大的中国式现代化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘哲希
王兆瑞
吴韬
关键词:  老龄化  经济增长  增长转型  全要素生产率    
Summary:  As population aging advances, China's traditional capital and labor driven growth pattern is becoming increasingly unsustainable. China's growth transition must be accelerated. The Outline of the 14th Five-Year Plan and Vision 2035 explicitly states that China needs to effectively transform its growth pattern and promote changes in the quality, efficiency and drivers of growth. The main objectives of the growth transition are to improve the contribution of total factor productivity (TFP) to economic growth and to stimulate new drivers of economic growth. Countries that demonstrate higher levels of aging also tend to contribute more TFP to economic growth. However, a critical phenomenon that cannot be ignored is that a high TFP contribution does not lift aging economies out of stagnation, as demonstrated by Japan and some European economies.
This background leads to the focus of this paper, namely whether increasing the TFP contribution rate can effectively counteract the impact of aging on economic growth. This issue is both controversial and innovative, but it also has important practical significance for China and can yield guidance on how to better realize Chinese-style modernization with such a large population. Hence, based on the Penn World Table (version 10.0), this paper adopts the production function method to measure the TFP levels and their contribution to growth in 90 economies from 1961 to 2019. A regression model is constructed to analyze the effect of increasing TFP contribution on economic growth in an aging population, using cross-country panel data.
This paper draws three main conclusions. First, the aging rate is positively correlated with the TFP contribution rate. However, the increased TFP contribution stems mainly from a “passive rise” due to the rapid decline in traditional growth drivers, rather than an enhanced role of TFP in driving the economy. Second, as the aging rate increases, the promoting effect of the increased TFP contribution on economic growth weakens significantly. This finding holds after excluding the effect of the passive rise in the TFP contribution rate. Overreliance on increasing TFP to counteract aging makes economies prone to a situation characterized by high TFP contribution and low growth. Third, the subgroup regression shows that neither the TFP-driven pattern nor the traditional capital and labor driven growth pattern has any significant advantage in coping with population aging. Furthermore, the effect of aging on economic growth is negative and significant. The growth pattern that emphasizes both TFP and traditional growth drivers is more effective in mitigating the negative impacts of aging on economic growth, making such impacts insignificant.
This paper makes three contributions. First, it proposes and systematically demonstrates the passive rise of the TFP contribution rate in an aging context. This finding enhances the understanding of the problem posed by a high TFP contribution rate in an aging economy for all sectors of society. Second, this paper systematically analyzes the effect of increasing the TFP contribution rate to counteract aging. Studies usually focus on the role of TFP alone in aging contexts, neglecting the fact that factors such as TFP, capital, and labor are the main components of a growth system and are closely interconnected. From the perspective of the entire growth system, this paper finds that a growth pattern that emphasizes both traditional and new drivers is more helpful in offsetting the effects of aging than a TFP-driven growth pattern, which is a novel finding. Third, this paper presents a systematic measurement of the level of TFP and its contribution rate in major economies around the world, and it develops a relatively rich cross-country empirical study, which provides new empirical evidence for analyzing the growth transition in the process of aging.
The findings of this paper have valuable policy implications. China's TFP contribution to economic growth is currently low. Thus, in the face of aging, it is necessary to improve the TFP contribution to economic growth, and to transform the previous growth pattern driven by capital and labor. Furthermore, while increasing the TFP contribution rate, the weakening of traditional growth drivers should not be ignored. A TFP-driven growth pattern would be much less growth-enhancing, as it would be difficult for TFP to offset the decline in traditional factors' growth in an aging context. Therefore, China should break through the traditional understanding of existing theories, organically combine the strategy of innovation-driven development with the strategy of expanding domestic demand, and construct a new growth pattern that considers the interplay between both new and traditional growth drivers, so as to better respond to the challenges of aging and meet the growth rate required for the realization of socialist modernization.
Keywords:  Aging    Economic Growth    Growth Transition    Total Factor Productivity
JEL分类号:  C21   E23   J10  
基金资助: * 本文感谢国家自然科学基金面上项目(72373019)、国家自然科学基金专项项目(72141306)和对外经济贸易大学中央高校基本科研业务费专项资金(CTXD14-04)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  吴 韬,博士研究生,中国人民大学经济学院,E-mail:wutao21@ruc.edu.cn.   
作者简介:  刘哲希,经济学博士,副教授,对外经济贸易大学国际经济贸易学院,E-mail:liuzhexi@uibe.edu.cn.
王兆瑞,博士研究生,中国人民大学经济学院,E-mail:wangzhaorui696@126.com.
引用本文:    
刘哲希, 王兆瑞, 吴韬. 老龄化与“高TFP贡献率、低增长”问题[J]. 金融研究, 2023, 522(12): 1-19.
LIU Zhexi, WANG Zhaorui, WU Tao. Aging and the Issue of High Total Factor Productivity Contribution Rates but Low Growth. Journal of Financial Research, 2023, 522(12): 1-19.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V522/I12/1
[1] 蔡昉,2010,《人口转变、人口红利与刘易斯转折点》,《经济研究》第4期,第4~13页。
[2] 蔡昉,2017,《中国经济改革效应分析——劳动力重新配置的视角》,《经济研究》第7期,第4~17页。
[3] 蔡昉,2020,《如何开启第二次人口红利?》,《国际经济评论》第2期,第9~24页。
[4] 陈浩、徐瑞慧、唐滔和高宏,2021,《关于我国人口转型的认识和应对之策》,中国人民银行工作论文,No.2021/2。
[5] 陈彦斌、郭豫媚和姚一旻,2014,《人口老龄化对中国高储蓄的影响》,《金融研究》第1期,第71~84页。
[6] 陈彦斌、林晨和陈小亮,2019,《人工智能、老龄化与经济增长》,《经济研究》第7期,第47~63页。
[7] 陈彦斌和陈伟泽,2021,《潜在增速缺口与宏观政策目标重构——兼以中国实践评西方主流宏观理论的缺陷》,《经济研究》第3期,第14~31页。
[8] 都阳和封永刚,2021,《人口快速老龄化对经济增长的冲击》,《经济研究》第2期,第71~88页。
[9] 耿志祥和孙祁祥,2017,《人口老龄化、延迟退休与二次人口红利》,《金融研究》第1期,第52~68页。
[10] 黄志钢和刘霞辉,2015,《“新常态”下中国经济增长的路径选择》,《经济学动态》第9期,第51~62页。
[11] 寇宗来和千茜倩,2021,《私有信息、评级偏差和中国评级机构的市场声誉》,《金融研究》第6期,第114~132页。
[12] 梁颖和陈佳鹏,2013,《日本失去的二十年——基于中日人口红利比较的视角》,《人口学刊》第4期,第21~31页。
[13] 刘穷志和何奇,2013,《人口老龄化、经济增长与财政政策》,《经济学(季刊)》第1期,第119~134页。
[14] 刘伟和陈彦斌,2020,《2020—2035年中国经济增长与基本实现社会主义现代化》,《中国人民大学学报》第4期,第54~68页。
[15] 刘哲希和陈彦斌,2020,《“十四五”时期中国经济潜在增速测算——兼论跨越“中等收入陷阱”》,《改革》第10期,第33~49页。
[16] 宋傅天和姚东旻,《“城投部门”议价能力与地方政府债务扩张》,《管理世界》第12期,第92~110页。
[17] 王金营和杨磊,2010,《中国人口转变、人口红利与经济增长的实证》,《人口学刊》第5期,第15~24页。
[18] 王维国、刘丰和胡春龙,2019,《生育政策、人口年龄结构优化与经济增长》,《经济研究》第1期,第116~131页。
[19] 王一鸣,2017,《中国经济新一轮动力转换与路径选择》,《管理世界》第2期,第1~14页。
[20] 姚东旻、李三希和林思思,2015,《老龄化会影响科技创新吗——基于年龄结构与创新能力的文献分析》,《管理评论》第8期,第56~67页。
[21] 姚东旻、宁静和韦诗言,2017,《老龄化如何影响科技创新》,《世界经济》第4期,第105~128页。
[22] 袁志刚和宋铮,2000,《人口年龄结构、养老保险制度与最优储蓄率》,《经济研究》第11期,第24~32页。
[23] 张军扩、余斌和吴振宇,2014,《增长阶段转换的成因、挑战和对策》,《管理世界》第12期,第12~20页。
[24] 中国经济增长前沿课题组,2015,《突破经济增长减速的新要素供给理论、体制与政策选择》,《经济研究》第11期,第4~19页。
[25] Acemoglu D. and P.Restrepo, 2017, “Secular Stagnation? The Effect of Aging on Economic Growth in the Age of Automation”, American Economic Review, 107(5), pp.174~179.
[26] Conley T. G.,C. B. Hansen and P. E.Rossi, 2012, “Plausibly Exogenous”, Review of Economics and Statistics, 94(1), pp.260~272.
[27] Cutler D. M.,J. M.Poterba, L. M.Sheiner, L. H.Summers and G. A.Akerlof, 1990, “An Aging Society: Opportunity or Challenge?”, Brookings Papers on Economic Activity, 1990(1), pp.1~73.
[28] Czaja S. J. and C. C.Lee, 2007, “The Impact of Aging on Access to Technology”, Universal Access in the Information Society, 5(4), pp.341~349.
[29] Daniele F.,T.Honiden and A. C.Lembcke, 2019, “Ageing and Productivity Growth in OECD Regions: Combatting the Economic Impact of Ageing through Productivity Growth”, OECD Regional Development Working Papers.
[30] Eggertsson G. B., N. R.Mehrotra and J. A.Robbins, 2019, “Aging, Output Per Capita, and Secular Stagnation”, American Economic Review: Insights, 1(3), pp.325~342.
[31] Feyrer J., 2007, “Demographics and Productivity”, Review of Economics and Statistics, 89(1), pp.100~109.
[32] Gonzalez-Eiras M. and D.Niepelt, 2012, “Ageing, Government Budgets, Retirement, and Growth”, European Economic Review, 56(1), pp.97~115.
[33] Heer B. and A. Irmen, 2014, “Population, Pensions, and Endogenous Economic Growth”, Journal of Economic Dynamics and Control, 46, pp.50~72.
[34] Lindh T.and B.Malmberg, 1999. “Age Structure Effects and Growth in the OECD, 1950-1990”, Journal of population Economics, 12(3), pp.431~449.
[35] Lopez-Garcia P. and B.Szörfi, 2021, “Key Factors behind Productivity Trends in Euro Area Countries”, European Central Bank Economic Bulletin, No.7.
[36] Maestas N., K. J.Mullen and D.Powell, 2016, “The Effect of Population Aging on Economic Growth, the Labor Force and Productivity”, NBER Working Paper, No. 22452.
[37] Manyika J.,J.Woetzel and R. Dobbs, 2015, Global Growth: Can Productivity Save the Day in an Aging World?, McKinsey Global Institute.
[38] Noda H., 2011, “Population Aging and Creative Destruction”, Journal of Economic Research, 16(1), pp.29~58.
[39] Strulik H., K.Prettner and A.Prskawetz, 2013, “The Past and Future of Knowledge-Based Growth”, Journal of Economic Growth, 18(4), pp.411~437.
[40] Westelius M. N. J. and Y.Liu, 2016, “The Impact of Demographics on Productivity and Inflation in Japan”, IMF Working Paper, No.237.
[1] 成程, 田轩, 徐照宜. 供应链金融与企业效率升级 ——来自上市公司公告与地方政策文件的双重证据[J]. 金融研究, 2023, 516(6): 132-149.
[2] 文书洋, 刘锡良, 董青马. 金融业应当让利吗?——基本事实、理论分析与全球实证证据[J]. 金融研究, 2023, 515(5): 20-37.
[3] 余泳泽, 庄海涛, 伏雨. 社会失信与全要素生产率——基于交易成本视角的研究[J]. 金融研究, 2023, 515(5): 58-76.
[4] 翟光宇, 王超, 姜美君. 人口老龄化、货币政策效果及传导渠道[J]. 金融研究, 2023, 514(4): 1-18.
[5] 陈熠辉, 蔡庆丰, 王斯琪. 人口老龄化、企业债务融资与金融资源错配——基于地级市人口普查数据的实证研究[J]. 金融研究, 2023, 512(2): 40-59.
[6] 王博, 赵森杨, 罗荣华, 彭龙. 地方政府债务、空间溢出效应与区域经济增长[J]. 金融研究, 2022, 506(8): 18-37.
[7] 文书洋, 刘浩, 王慧. 绿色金融、绿色创新与经济高质量发展[J]. 金融研究, 2022, 506(8): 1-17.
[8] 龙海明, 吴迪. 实体杠杆对经济增长的影响研究——基于金融稳定的调节效应[J]. 金融研究, 2022, 506(8): 38-54.
[9] 刘哲希, 郭俊杰, 谭涵予, 陈彦斌. 货币政策能够兼顾“稳增长”与“稳杠杆”双重目标吗?——基于不同杠杆环境的比较[J]. 金融研究, 2022, 505(7): 20-37.
[10] 徐尚昆, 王璐, 杨汝岱. 地权稳定与农业生产[J]. 金融研究, 2022, 504(6): 133-152.
[11] 文竹, 金涛. 关于中国经济增长模式的一个解释框架——基于“土地财政”的演进分析[J]. 金融研究, 2022, 502(4): 1-17.
[12] 王正位, 李梦云, 廖理, 石永彬. 人口老龄化与区域创业水平——基于启信宝创业大数据的研究[J]. 金融研究, 2022, 500(2): 80-97.
[13] 倪红福. 扭曲因子、进口中间品价格与全要素生产率——基于非竞争型投入产出网络结构一般均衡模型事后核算方法[J]. 金融研究, 2022, 500(2): 21-39.
[14] 陈创练, 高锡蓉, 刘晓彬. “稳增长”与“防风险”双目标的宏观调控政策抉择[J]. 金融研究, 2022, 499(1): 19-37.
[15] 朱宁, 刘伟其, 于之倩, 王兵. 中国银行业结构性全要素生产率增长研究[J]. 金融研究, 2021, 493(7): 1-18.
[1] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[2] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[3] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[4] 刘啟仁, 黄建忠. 人民币汇率变动与出口企业研发[J]. 金融研究, 2017, 446(8): 19 -34 .
[5] 纪敏, 严宝玉, 李宏瑾. 杠杆率结构、水平和金融稳定——理论分析框架和中国经验[J]. 金融研究, 2017, 440(2): 11 -25 .
[6] 李锋森. 我国融资融券助涨助跌了吗?——基于波动非对称性视角[J]. 金融研究, 2017, 440(2): 147 -162 .
[7] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[8] 洪正, 张硕楠, 张琳. 经济结构、财政禀赋与地方政府控股城商行模式选择[J]. 金融研究, 2017, 448(10): 83 -98 .
[9] 严成樑. 延迟退休、财政支出结构调整与养老金替代率[J]. 金融研究, 2017, 447(9): 51 -66 .
[10] 彭青青, 李宏彬, 施新政, 吴斌珍. 中国市场化过程中城镇   女性劳动参与率变化趋势[J]. 金融研究, 2017, 444(6): 33 -49 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1