Please wait a minute...
金融研究  2022, Vol. 510 Issue (12): 168-186    
  本期目录 | 过刊浏览 | 高级检索 |
自由现金流量创造力与违约风险——来自A股公司的经验证据
谢德仁, 刘劲松
清华大学经济管理学院,北京 100084;
四川大学商学院,四川成都 610064
Free Cash Flow Productivity and Default Risk: Evidence from A-Share Listed Companies
XIE Deren, LIU Jinsong
School of Economics and Management, Tsinghua University;
Business School, Sichuan University
下载:  PDF (573KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于我国A股上市公司数据,研究了企业自由现金流量创造力与违约风险之间的关系。研究发现:(1)企业自由现金流量创造力越强,其违约风险越低。经过一系列稳健性检验后,该结论依旧成立。(2)自由现金流量创造力越强的企业往往有更低的债务规模、更高的资产收益率和更低的股票波动,因而其违约风险更低。(3)自由现金流量创造力与违约风险的负相关关系,主要存在于货币政策紧缩时期以及外部信息环境较差的企业。本文发现意味着,监管部门和投资者应重视上市公司自由现金流量创造力不足所带来的潜在债务违约风险,通过不断提高公司自由现金流量创造力,助力我国宏观经济与微观企业高质量发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢德仁
刘劲松
关键词:  自由现金流量  违约风险  高质量发展    
Summary:  The default risk of Chinese firms, which has been increasing since 2014, has attracted significant attention from the government and market participants. Accordingly, reducing default risk is essential for reforming the economy and instigating high-quality development. A number of recent studies focus on the default risk of Chinese firms. These studies examine various determinants of default risk, such as corporate strategies, innovation, financial asset allocation, labor costs and implicit government guarantees. However, few studies examine how free cash flow productivity, a fundamental attribute of firms, affects firm default risk.
In the long run, the criterion for judging the development quality of a firm is whether it can sustainably create value for capital providers. In turn, the ability to create value for capital providers relies on whether the firm can persistently produce cash value added. A high-quality development firm should demonstrate sustainable productivity on cash value added, which first requires the firm to attain persistent free cash flow productivity. Thus, rather than using financing cash inflows to pay capital providers, a high-quality firm should generate operating cash flow above and beyond its investments and the required return to its creditors and shareholders.
We propose that there are three mechanisms by which free cash flow productivity can reduce default risk: first, firms with higher free cash flow productivity are more likely to rely on lower-cost internal financing to cover their investments and less on debt financing; second, firms with higher free cash flow productivity have higher quality assets and higher return on assets; and third, a high level of free cash flow productivity in the long run implies sustainable profitability, which in turn leads to a more transparent information environment and less uncertainty about the value of firm assets.
This paper empirically examines whether free cash flow productivity affects default risk. Specifically, following the literature on free cash flow, this paper measures the free cash flow productivity of firms. Using a sample of A-share listed firms in China, we examine the association between free cash flow productivity and firm default risk, especially when controlling for traditional financial indicators. We find a negative and significant association between free cash flow productivity and firm default risk. Thus, our results suggest that firms with higher free cash flow productivity have lower default risk. This finding is supported by various robustness tests. Moreover, firms with higher free cash flow productivity have lower debt ratios, higher return on assets and lower stock volatility, and thus less default risk. The negative association between free cash flow productivity and default risk mainly arises in periods of monetary policy tightening and in firms with poor external information environments, which partly explains the increase in debt defaults following the tightening of monetary policy in recent years.
This paper makes the following three contributions to the literature. First, this paper contributes to the literature on free cash flow. While studies discuss agency conflict in the use of free cash flow and use free cash flow to measure the agency cost, there is little discussion of the economic significance of free cash flow as a financial indicator from the perspective of free cash flow productivity. Thus, this paper adds to the literature on free cash flow by measuring free cash flow productivity and testing its impact on default risk. Second, from an accounting perspective, this paper complements the literature on corporate default risk by examining the effect of free cash flow productivity as a measure of firm asset quality on default risk. Using the theoretical framework of Merton (1974), the literature focuses on operating cash flow and indirect measures of asset quality, and ignores more multidimensional cash flow information. Using our proposed analytical “five-forces model”, we find that free cash flow productivity can more directly capture fundamental information about asset quality from an accounting perspective, and thus incrementally affect default risk. As a result, this paper extends the literature on default risk. Finally, the findings of this paper have a number of policy implications. In recent years, the default risk of Chinese firms has been increasing and regulators have begun to use free cash flow as a key indicator of the financial management of state-owned enterprises. In this context, our findings can help regulators and stakeholders understand the effects of free cash flow productivity and develop effective measures to encourage listed firms to enhance their free cash flow productivity and, in turn, reduce their debt default risk. Overall, the findings of this paper can help reduce systemic financial risk and contribute to the development of a world-class financial management system.
Keywords:  Free Cash Flow    Default Risk    High-Quality Development
JEL分类号:  L25   G33   M41  
基金资助: * 本文感谢清华大学经济管理学院研究基金(2020051009)、清华大学中国现代国企研究院研究基金(iSOEYB202102)以及2022年建设世界一流大学经费-提升自主创新和社会服务能力管理科学与国家治理(20502044C3001)的资助。
通讯作者:  刘劲松,管理学博士,助理研究员,四川大学商学院,E-mail:liujinsong2022@163.com.   
作者简介:  谢德仁,管理学博士,教授,清华大学经济管理学院,E-mail:xiedr@sem.tsinghua.edu.cn.
引用本文:    
谢德仁, 刘劲松. 自由现金流量创造力与违约风险——来自A股公司的经验证据[J]. 金融研究, 2022, 510(12): 168-186.
XIE Deren, LIU Jinsong. Free Cash Flow Productivity and Default Risk: Evidence from A-Share Listed Companies. Journal of Financial Research, 2022, 510(12): 168-186.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2022/V510/I12/168
[1] 邓路、刘欢和侯粲然,2020,《金融资产配置与违约风险:蓄水池效应,还是逐利效应?》,《金融研究》第7期,第172~189页。
[2] 董志强、魏下海和汤灿晴,2012,《制度软环境与经济发展——基于30个大城市营商环境的经验研究》,《管理世界》第4期,第9~20页。
[3] 范子英、孟令杰和石慧,2009,《为何1959—1961年大饥荒终结于1962年》,《经济学(季刊)》第1期,第289~306页。
[4] 靳庆鲁、孔祥和侯青川,2012,《货币政策、民营企业投资效率与公司期权价值》,《经济研究》第5期,第96~106页。
[5] 罗炜和朱春艳,2010,《代理成本与公司自愿性披露》,《经济研究》第10期,第143~155页。
[6] 孟庆斌、侯粲然和鲁冰,2019,《企业创新与违约风险》,《世界经济》第10期,第169~192页。
[7] 盛丹和王永进,2010,《契约执行效率能够影响FDI的区位分布吗?》,《经济学(季刊)》第4期,第1239~1260页。
[8] 王化成、侯粲然和刘欢,2019,《战略定位差异、业绩期望差距与企业违约风险》,《南开管理评论》第4期,第4~19页。
[9] 王诗雨和陈志红,2018,《企业财务风险衍化及其产业效应——基于规制环境和竞争环境的双重情境分析》,《会计研究》第11期,第56~62页。
[10] 吴世农和卢贤义,2001,《我国上市公司财务困境的预测模型研究》,《经济研究》第6期,第46~55页。
[11] 谢德仁,2013,《企业分红能力之理论研究》,《会计研究》第2期,第22~32页。
[12] 谢德仁,2018,《培育现金增加值创造力 实现企业高质量发展》,《中国证券报》A8版。
[13] 谢德仁,2021,《自由现金流量创造力十问》,《财会月刊》第21期,第22~27页。
[14] 谢德仁、刘劲松和廖珂,2020,《A股公司资本回报支付能力总体分析(1998—2018)——基于自由现金流量创造力视角》,《财会月刊》第19期,第9~31页。
[15] 谢德仁、史学智和刘劲松,2022,《A股上市公司自由现金流量创造力99强分析(2016—2020)》,《财务研究》第2期,第14~29页。
[16] 谢德仁和张梅,2016,《论商业银行现金流量表的重构——兼析我国商业银行可持续分红能力》,《会计研究》第3期,第21~28页。
[17] 熊彼特,1999,《资本主义、社会主义和民主》,商务印书馆。
[18] 许红梅和李春涛,2020,《劳动保护、社保压力与企业违约风险——基于社会保险法实施的研究》,《金融研究》第3期,第115~133页。
[19] 杨畅和庞瑞芝,2017,《契约环境、融资约束与“信号弱化”效应——基于中国制造业企业的实证研究》,《管理世界》第4期,第60~69页。
[20] 叶志锋和彭永梅,2009,《现金流量操纵、债权保护与债务违约率——来自中国证券市场的证据》,《经济与管理》第10期,第46~51页。
[21] 翟淑萍、韩贤、张晓琳和陈曦,2022,《数字金融能降低企业债务违约风险吗》,《会计研究》第2期,第117~131页。
[22] Acemoglu, D., S. Johnson, and J. A. Robinson. 2001. “The Colonial Origins of Comparative Development: An Empirical Investigation”, American Economic Review, 91(5):1369~1401.
[23] Affleck‐Graves, J., C. M. Callahan, and N. Chipalkatti. 2002. “Earnings Predictability, Information Asymmetry, and Market liquidity”, Journal of Accounting Research, 40(3):561~583.
[24] Altman, E. I. 1968. “Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy”, The Journal of Finance, 23(4):589~609.
[25] Ashbaugh-Skaife, H., D. W. Collins, and R. LaFond. 2006. “The Effects of Corporate Governance on Firms' Credit Ratings”, Journal of Accounting and Economics, 42(1-2):203~243.
[26] Baghdadi, G. A., L. H. Nguyen, and E. J. Podolski. 2020. “Board Co-option and Default Risk”, Journal of Corporate Finance, 64:1~21.
[27] Baron, R. M., and D. A. Kenny. 1986. “The Moderator-mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations”, Journal of Personality and Social Psychology, 51(6):1173~1182.
[28] Beaver, W. H. 1966. “Financial Ratios as Predictors of Failure”, Journal of Accounting Research, 4:71~111.
[29] Bharath, S. T., and T. Shumway. 2008. “Forecasting Default with the Merton Distance to Default Model”, The Review of Financial Studies, 21(3):1339~1369.
[30] Brogaard, J., D. Li, and Y. Xia. 2017. “Stock Liquidity and Default Risk”, Journal of Financial Economics, 124(3):486~502.
[31] Casey, C., and N. Bartczak. 1985. “Using Operating Cash Flow Data to Predict Financial Distress: Some Extensions”, Journal of Accounting Research, 23(1):384~401.
[32] Cheng, M., and K. R. Subramanyam. 2008. “Analyst Following and Credit Ratings”, Contemporary Accounting Research, 25(4):1007~1044.
[33] Décamps, J. P., T. Mariotti, J. C. Rochet, and S. Villeneuve. 2011. “Free Cash Flow, Issuance Costs, and Stock Prices”, The Journal of Finance, 66(5):1501~1544.
[34] Duffie, D., and D. Lando. 2001. “Term Structures of Credit Spreads with Incomplete Accounting Information”, Econometrica, 69(3):633~664.
[35] Fama, E. F., and K. R. French. 2015. “A Five-factor Asset Pricing Model”, Journal of Financial Economics, 116(1):1~22.
[36] Geng, Z., and J. Pan. 2019. “The SOE Premium and Government Support in China's Credit Market”, NBER Working Paper.
[37] Groba, J., and P. Serrano. 2020. “Foreign Monetary Policy and Firms' Default Risk”, The European Journal of Finance, 26(11):1047~1074.
[38] Guariglia, A., X. Liu, and L. Song. 2011. “Internal Finance and Growth: Microeconometric Evidence on Chinese Firms”, Journal of Development Economics, 96(1):79~94.
[39] Hsu, P., H. Lee, A. Z. Liu, and Z. Zhang. 2015. “Corporate Innovation, Default Risk, and Bond Pricing”, Journal of Corporate Finance, 35:329~344.
[40] Jensen, M. C. 1986. “Agency Costs of Free Cash Flow, Corporate Finance, and Takeovers”, The American Economic Review, 76(2):323~329.
[41] Liu, J., R. F. Stambaugh, and Y. Yuan. 2019. “Size and Value in China”, Journal of Financial Economics, 134(1):48~69.
[42] Mansi, S. A., W. F. Maxwell, and D. P. Miller. 2011. “Analyst Forecast Characteristics and the Cost of Debt”, Review of Accounting Studies, 16(1):116~142.
[43] Merton, R. C. 1974. “On the Pricing of Corporate Debt: The Risk Structure of Interest Rates”, The Journal of Finance, 29(2):449~470.
[44] Myers, S. C., and N. S. Majluf. 1984. “Corporate Financing and Investment Decisions When Firms Have Information That Investors Do Not Have”, Journal of Financial Economics, 13(2):187~221.
[45] Ohlson, J. A. 1980. “Financial Ratios and the Probabilistic Prediction of Bankruptcy”, Journal of Accounting Research, 18(1):109~131.
[46] Richardson, S. A., R. G. Sloan, M. T. Soliman, and I. Tuna. 2005. “Accrual Reliability, Earnings Persistence and Stock Prices”, Journal of Accounting and Economics, 39(3):437~485.
[47] Shumway, T. 2001. “Forecasting Bankruptcy more Accurately: A Simple Hazard Model”, The Journal of Business, 74(1):101~124.
[48] Sloan, R. G. 1996. “Do Stock Prices Fully Reflect Information in Accruals and Cash Flows about Future Earnings”, The Accounting Review, 71(3):289~315.
[49] Vassalou, M., and Y. Xing. 2004. “Default Risk in Equity Returns”, The Journal of Finance, 59(2): 831~868.
[1] 刘文杰, 宋弘, 陈诗一. 教育财政如何影响家庭人力资本投资:事实、机制与政策含义[J]. 金融研究, 2022, 507(9): 93-110.
[2] 马思超, 沈吉, 彭俞超. 杠杆率变动、固定资产投资与研发活动——兼论金融赋能高质量发展[J]. 金融研究, 2022, 503(5): 1-19.
[3] 文书洋, 张琳, 刘锡良. 我们为什么需要绿色金融?——从全球经验事实到基于经济增长框架的理论解释[J]. 金融研究, 2021, 498(12): 20-37.
[4] 邓路, 刘欢, 侯粲然. 金融资产配置与违约风险:蓄水池效应,还是逐利效应?[J]. 金融研究, 2020, 481(7): 172-189.
[5] 江嘉骏, 高铭, 卢瑞昌. 网络借贷平台风险:宏观驱动因素与监管[J]. 金融研究, 2020, 480(6): 152-170.
[6] 许红梅, 李春涛. 劳动保护、社保压力与企业违约风险——基于《社会保险法》实施的研究[J]. 金融研究, 2020, 477(3): 115-133.
[7] 封思贤, 那晋领. P2P借款人的定价偏差与被动违约风险——基于“人人贷”数据的分析[J]. 金融研究, 2020, 477(3): 134-151.
[8] 宋全云, 李晓, 钱龙. 经济政策不确定性与企业贷款成本[J]. 金融研究, 2019, 469(7): 57-75.
[9] 徐忠. 经济高质量发展阶段的中国货币调控方式转型[J]. 金融研究, 2018, 454(4): 1-19.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1