Please wait a minute...
金融研究  2024, Vol. 523 Issue (1): 96-112    
  本期目录 | 过刊浏览 | 高级检索 |
经济周期与污染排放强度——机制分析与政策应对
李建军, 冯可欣, 邓贵川, 彭俞超
中央财经大学金融学院/丝路金融研究中心, 北京 102206;中山大学国际金融学院/高级金融研究院, 广东珠海 519082
Business Cycles and Pollution Emission Intensity —Mechanism Analysis and Policy Response
LI Jianjun, FENG Kexin, DENG Guichuan, PENG Yuchao
School of Finance, Central University of Finance and Economics; International School of Business and Finance, Sun Yat-Sen University; Advanced Institute of Finance, Sun Yat-Sen University
下载:  PDF (1236KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国经济迈入新发展阶段,绿色发展理念深入人心,如何处理好环境保护与经济发展的关系、提升经济增长质量,是未来经济发展的核心问题。本文首先结合1998—2013年中国工业企业污染排放数据考察经济周期与污染排放强度之间的关系,发现污染排放强度呈现逆周期性。基于这一事实,我们构建了带有环境约束的两部门异质性企业模型,刻画污染排放强度的动态特征,并从企业结构效应和家庭一般均衡效应角度,分析污染排放强度逆周期性的理论机制。数值模拟发现,经济下行时,减排项目收益率相对非减排项目下降幅度更大,企业倾向于投资非减排项目,投资减排项目的企业数量减少,使得污染排放强度上升。与此同时,污染问题带来的负外部性增加,并通过劳动供给下降和劳动成本上升降低企业利润,阻碍企业主动减排和经济绿色可持续发展。经济上行期则相反。政策分析表明,当经济处于下行周期时,盯住污染排放强度的排放税政策、清洁设备补贴政策以及污染企业信贷限制政策,均能有效抑制污染排放强度上升,其中,排放税政策和补贴政策通过企业部门的结构效应缓解了环境影响。本文为完善环境政策的设计提供了理论证据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李建军
冯可欣
邓贵川
彭俞超
关键词:  经济周期  污染排放强度  企业减排  环境政策    
Summary:  In the face of environmental issues and limited resources, how to coordinate the relationship between development and emission reduction, while alleviating business cycle fluctuations and encouraging enterprises to take the initiative in emission reduction, is of great significance for achieving a “win-win” situation between the economy and environment. To answer this question, it is necessary to first clarify the relationship between business cycles and corporate emission reduction behavior and environmental performance. Thus, this paper focuses on pollution emission intensity, aiming to explore the dynamic processes, internal mechanisms, and policy responses of different corporate reduction behaviors in different business cycles in China, to facilitate green and high-quality enterprise development.
Based on the pollution data of Chinese industrial enterprises from 1998 to 2013, we observe the countercyclical characteristics of pollution emission intensity. To explain this finding, this paper constructs a two-sector DSGE model with environmental constraints to analyze the relationship between business cycles and pollution emission intensity. In the model, both high-emission and low-emission projects are established. Low-emission projects introduce cleaner production equipment into the production function, so their pollution emission intensity is lower than in high-emission projects, resulting in lower environmental negative externalities. The model also includes enterprise heterogeneity with respect to management ability for cleaner production equipment, such that enterprises' choice of optimal project depends on their own ability to manage low-emission projects. Specifically, enterprises with high management skills are more likely to choose low-emission projects. To describe the externality of pollution emissions, this paper introduces pollutant-adjusted labor into the household utility function. This setting helps to elucidate the general equilibrium effects of pollution emissions on the macro-economy. Subsequently, through impulse response functions, this paper analyzes the key mechanism underlying the countercyclical characteristics of pollution emission intensity from both the enterprise and household sectors as well as policy response methods.
The results show that when the economy is in a downturn, the return on investment falls more sharply for enterprises that invest in low-emission projects than for those that invest in high-emission projects, leading to a decrease in the number of enterprises investing in low-emission projects and a rise in pollution emission intensity. At the same time, as pollution emission intensity rises, it increases the negative externality of pollution emissions on labor, which lowers enterprise profits through decreased labor supply and increased labor costs, further hindering sustainable economic development. Policy analysis shows that when the economy is in a downturn, policies that target pollution emission intensity, such as emissions taxes, price subsidies for cleaner equipment, and credit restrictions on polluting enterprises, can effectively curb the rise in pollution emission intensity. Specifically, emissions tax policies and subsidy policies have positive effects on the environment through structural effects in the enterprise sector, helping to promote corporate low-emission transformation.
The marginal contribution of this paper mainly lies in discovering a negative relationship between US manufacturing output and industry-specific pollution emission intensity documented in the existing literature. However, the relationship between China's business cycle and pollution emission intensity remains unknown. Based on empirical analysis, we find that pollution emission intensity is countercyclical. Moreover, we construct a model to attempt to explain this feature, providing preliminary empirical evidence and theoretical support for the relationship between business cycles and pollution emissions. This paper focuses on analyzing the short-term impacts of taxation, subsidies, and other environmental policies. Future research directions include studying long-term policy effects based on growth models from cost-benefit perspectives.
Keywords:  Business Cycle    Pollution Emission Intensity    Cleaner Production    Environmental Policy
JEL分类号:  E12   H23   Q20  
基金资助: *本文感谢国家社会科学基金重大项目(23ZDA116)、国家自然科学基金(72273160,71903208,71903205)的资助。感谢陈登科、王忏、郭俊杰,第十三届《金融研究》论坛点评人方意、俞红海,经济波动与增长论坛刘岩和许志伟,以及匿名审稿人的建设性意见和建议,文责自负。
通讯作者:  彭俞超,经济学博士,教授,中央财经大学金融学院/丝路金融研究中心,E-mail: yuchao.peng@cufe.edu.cn.   
作者简介:  李建军,经济学博士,教授,中央财经大学金融学院/丝路金融研究中心,E-mail: ljjlsh@126.com.
冯可欣,博士研究生,中央财经大学金融学院,E-mail: fengkexin@email.cufe.edu.cn.
邓贵川,金融学博士,副教授,中山大学国际金融学院/高级金融研究院,E-mail: denggch@mail.sysu.edu.cn.
引用本文:    
李建军, 冯可欣, 邓贵川, 彭俞超. 经济周期与污染排放强度——机制分析与政策应对[J]. 金融研究, 2024, 523(1): 96-112.
LI Jianjun, FENG Kexin, DENG Guichuan, PENG Yuchao. Business Cycles and Pollution Emission Intensity —Mechanism Analysis and Policy Response. Journal of Financial Research, 2024, 523(1): 96-112.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V523/I1/96
[1]陈登科,2020,《贸易壁垒下降与环境污染改善——来自中国企业污染数据的新证据》,《经济研究》第12期,第98~114页。
[2]陈诗一、张建鹏和刘朝良,2021,《环境规制、融资约束与企业污染减排——来自排污费标准调整的证据》,《金融研究》第9期,第51~71页。
[3]郭晔和房芳,2021,《新型货币政策担保品框架的绿色效应》,《金融研究》第1期,第91~110页。
[4]解学梅和韩宇航,2022,《本土制造业企业如何在绿色创新中实现“华丽转型”?——基于注意力基础观的多案例研究》,《管理世界》第3期,第76~106页。
[5]李永友和沈坤荣,2008,《我国污染控制政策的减排效果——基于省际工业污染数据的实证分析》,《管理世界》第7期,第7~17页。
[6]罗知和齐博成,2021,《环境规制的产业转移升级效应与银行协同发展效应——来自长江流域水污染治理的证据》,《经济研究》第2期,第174~189页。
[7]马理、张人中、马威和牛慕鸿,2023,《能源结构有序调整与绿色信贷政策调控》,《金融研究》第1期,第94~112页。
[8]马勇和陈雨露,2014,《经济开放度与货币政策有效性:微观基础与实证分析》,《经济研究》第3期,第35~46页。
[9]潘冬阳、陈川祺和Michael Grubb,2021,《金融政策与经济低碳转型——基于增长视角的研究》,《金融研究》第12期,第1~19页。
[10]彭俞超和方意,2016,《结构性货币政策、产业结构升级与经济稳定》,《经济研究》第7期,第29~42页。
[11]彭俞超和何山,2020,《资管新规、影子银行与经济高质量发展》,《世界经济》第1期,第47~69页。
[12]宋科、徐蕾、李振和王芳,2022,《ESG投资能够促进银行创造流动性吗?——兼论经济政策不确定性的调节效应》,《金融研究》第2期,第61~79页。
[13]王馨和王营,2021,《环境信息公开的绿色创新效应研究——基于〈环境空气质量标准〉的准自然实验》,《金融研究》第10期,第134~152页。
[14]王遥、潘冬阳、彭俞超和梁希,2019,《基于DSGE模型的绿色信贷激励政策研究》,《金融研究》第11期,第1~18页。
[15]张军,2002,《资本形成、工业化与经济增长:中国的转轨特征》,《经济研究》第6期,第3~13页。
[16]庄子罐、崔小勇和赵晓军,2016,《不确定性、宏观经济波动与中国货币政策规则选择——基于贝叶斯DSGE模型的数量分析》,《管理世界》第11期,第20~31页。
[17]Acemoglu, D., P. Aghion, L. Bursztyn and D. Hemous, 2012, “The Environment and Directed Technical Change”, American Economic Review, 102(1), pp.131~166.
[18]Annicchiarico, B. and F. Di Dio, 2015, “Environmental Policy and Macroeconomic Dynamics in a New Keynesian Model”, Journal of Environmental Economics and Management, 69, pp.1~21.
[19]Bernanke, B.S., M. Gertler and S. Gilchrist, 1999, “The Financial Accelerator in a Quantitative Business Cycle Framework”, Handbook of Macroeconomics, 1, pp.1341~1393.
[20]Boissay, F., F. Collard and F. Smets, 2016, “Booms and Banking Crises”, Journal of Political Economy, 124(2), pp.489~538.
[21]Brandt, L., J. Van Biesebroeck and Y. Zhang, 2012, “Creative Accounting or Creative Destruction? Firm-level Productivity Growth in Chinese Manufacturing”, Journal of Development Economics, 97(2), pp.339~351.
[22]Calvo, G.A., 1983, “Staggered Prices in a Utility-maximizing Framework”, Journal of Monetary Economics, 12(3), pp.383~398.
[23]Chang, C., K. Chen, D.F. Waggoner and T. Zha, 2016, “Trends and Cycles in China's Macroeconomy”, NBER Macroeconomics Annual, 30(1), pp.1~84.
[24]Copeland B. R. and M. S. Taylor, 2003, “Trade and the Environment: Theory and Evidence”, Princeton University Press.
[25]Dong, F., Y. Guo, Y. Peng and Z. Xu, 2022, “Economic Slowdown and Housing Dynamics in China: A Tale of Two Investments by Firms”, Journal of Money Credit and Banking, 54(6), pp.1839~1874.
[26]Fischer, C. and M. Springborn, 2011, “Emissions Targets and the Real Business Cycle: Intensity Targets versus Caps or Taxes”, Journal of Environmental Economics and Management, 62(3), pp.352~366.
[27]Grossman, G.M. and A.B. Krueger, 1995, “Economic Growth and the Environment”, The Quarterly Journal of Economics, 110(2), pp.353~377.
[28]Hanna, R. and P. Oliva, 2015, “The Effect of Pollution on Labor Supply: Evidence from a Natural Experiment in Mexico City”, Journal of Public Economics, 122, pp.68~79.
[29]Shapiro, J. S., and R. Walker, 2018, “Why is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade”, American Economic Review, 108(12), pp.3814~3854.
[30]Ye, H. J., Z. Huang and S. Chen, 2023, “Air Pollution and Agricultural Labor Supply: Evidence from China”, China Economic Review, 82, pp.102075.
[1] 刘凤良, 陈彦龙. 环境政策组合、信贷歧视与全要素生产率——基于企业治污投入的视角[J]. 金融研究, 2024, 524(2): 94-112.
[2] 陆婷, 徐奇渊. 中国企业杠杆:一个周期性问题?[J]. 金融研究, 2021, 488(2): 1-19.
[3] 邹静娴, 贾珅, 邱雅静, 邱晗. 经营风险与企业杠杆率[J]. 金融研究, 2020, 486(12): 20-39.
[4] 张可. 区域一体化有利于减排吗?[J]. 金融研究, 2018, 451(1): 67-83.
[5] 吴华强, 才国伟, 徐信忠. 宏观经济周期对企业外部融资的影响研究[J]. 金融研究, 2015, 422(8): 109-123.
[1] 张成思, 党超. 基于双预期的前瞻性货币政策反应机制[J]. 金融研究, 2017, 447(9): 1 -17 .
[2] 王贤彬, 黄亮雄, 董一军. 反腐败的投资效应——基于地区与企业双重维度的实证分析[J]. 金融研究, 2017, 447(9): 67 -82 .
[3] 刘凤良, 章潇萌, 于泽. 高投资、结构失衡与价格指数二元分化[J]. 金融研究, 2017, 440(2): 54 -69 .
[4] 纪敏, 严宝玉, 李宏瑾. 杠杆率结构、水平和金融稳定——理论分析框架和中国经验[J]. 金融研究, 2017, 440(2): 11 -25 .
[5] 高昊宇, 杨晓光, 叶彦艺. 机构投资者对暴涨暴跌的抑制作用:基于中国市场的实证[J]. 金融研究, 2017, 440(2): 163 -178 .
[6] 宋献中, 胡珺, 李四海. 社会责任信息披露与股价崩盘风险——基于信息效应与声誉保险效应的路径分析[J]. 金融研究, 2017, 442(4): 161 -175 .
[7] 郭凯明, 余靖雯. 工资增长、生育率差异与人力资本积累——基于内生生育和退休的动态一般均衡研究[J]. 金融研究, 2017, 441(3): 1 -15 .
[8] 孔东民, 项君怡, 代昀昊. 中小企业过桥贷款投融资的财务效应——来自我国中小企业版上市公司的证据[J]. 金融研究, 2017, 441(3): 145 -158 .
[9] 陆前进. 贸易条件与经常项目的动态变化关系——基于新开放经济宏观经济学框架的理论和“金砖五国”的实证研究[J]. 金融研究, 2017, 443(5): 32 -46 .
[10] 牛慕鸿, 张黎娜, 张翔. 利率走廊、利率稳定性和调控成本[J]. 金融研究, 2017, 445(7): 16 -28 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1