Please wait a minute...
金融研究  2021, Vol. 487 Issue (1): 13-30    
  本期目录 | 过刊浏览 | 高级检索 |
混频数据信息下的时变货币政策传导行为研究——基于混频 TVP-FAVAR模型
尚玉皇, 赵芮, 董青马
西南财经大学中国金融研究中心,四川成都 611130
The Time-varying Transmission Mechanism of Monetary Policy with Mixed Frequency Data: Evidence from MF-TVP-FAVAR Model
SHANG Yuhuang, ZHAO Rui, DONG Qingma
Institute of Chinese Financial Studies, Southwestern University of Finance and Economics
下载:  PDF (3309KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 现实经济环境中,货币政策操作受到金融市场及宏观经济信息的共同影响。如何基于混频大数据信息分析货币政策行为机制是需解决的现实问题。为此,本文提出一种混频时变参数因子增广向量自回归(MF-TVP-FAVAR)模型。基于宏观经济及金融市场等多维度混频数据信息的实证结果表明:首先,MF-TVP-FAVAR模型在宏观金融混频数据中提取的金融形势指数(FCI)能较好地表征宏观经济先行趋势,为货币政策的制定提供前瞻性信息。其次,混频TVP-FAVAR模型可以捕捉价格型和数量型货币政策传导的高频时变特征。与货币供应量相比,利率传导对产出的影响具有滞后性。利率传导随着利率市场化改革愈发畅通,而信贷传导机制因财政政策搭配等问题日渐受阻。再次,货币政策传导效果受到经济周期影响,无论产出效应还是价格效应,经济上行时期,货币政策传导机制都比经济衰退时期更加通畅。价格型和数量型传导机制在经济下行时的作用效果均会减弱,但数量型货币政策更易受到经济周期的影响。最后,货币政策对FCI的冲击响应具有时变性,说明金融市场信息冲击对我国货币政策调控具有结构性的动态影响。货币当局制定尤其是微调货币政策时应及时评估金融市场信息冲击的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尚玉皇
赵芮
董青马
关键词:  TVP-FAVAR模型  混频数据  货币政策  传导机制    
Summary:  The global economy is facing increasing uncertainty, and the financial market is becoming more fragile. China's macro-economy is also facing problems such as economic structural adjustment and financial risk agglomeration, which make the relationship between monetary policy and macro-economy more challenging. The gradual reform of Chinese interest rate marketization and the rapid development of Fintech are also leading to a complex financial big data environment in terms of monetary policy. To understand the dynamic behavior of the monetary policy transmission mechanism, the available macroeconomic and financial market big data information must be utilized. Effectively analyzing the monetary policy mechanism through big data is thus a critical problem.
The transmission mechanism for monetary policies attracts extensive research attention. Some believe that the credit (quantitative) transmission mechanism is the main factor, while others suggest that the interest rate mechanism is more effective. Monetary policies typically exhibit time-varying features due to the business cycle, and thus a time-varying parameter vector autoregression (TVP-VAR) model is proposed to capture the behavior of monetary policies. The factor-augmented VAR (FAVAR) model is also used to analyze monetary policy, as it effectively utilizes real economic data.
The traditional TVP-FAVAR model uses only the same frequency data. However, the frequency of macroeconomic data is completely different from that of financial market data. Mixed frequency data are therefore widespread in actual economic activities. Effectively using such data to construct a TVP-FAVAR model and then analyze the monetary policy behavioral mechanism is therefore the challenge we face, and the aim of this study.
We propose a mixed frequency TVP-FAVAR (MF-TVP-FAVAR) model. We collect Chinese mixed frequency big data for our empirical study. The main advantage of the MF-TVP-FAVAR model is that it maximizes the integration of high-frequency financial market information and low-frequency macroeconomic information, and effectively extracts unobservable potential factors from a large amount of information. These advantages help us to more accurately analyze the time-varying relationships of monetary policy, macro indicators, and financial market indicators.
The mixed frequency data are mainly derived from China's quarterly and monthly macro data, and monthly financial data are also included. The sample period is from January 1997 to December 2017. The data sources are the National Bureau of Statistics and the WIND database.
The main conclusions of this paper are as follows. First, based on the MF-TVP-FAVAR model, the Financial Condition Index (FCI) extracted from financial market big data can better establish the dynamics of China's financial situation. This index is a leading indicator that can be used to measure economic performance, and an auxiliary indicator of the intermediary target of monetary policy. The FCI has a significant positive impact on interest rates and money supply, and this impact shows time-varying features.
Second, based on the time-varying response function of monetary policy shocks, the MF-TVP-FAVAR model captures the time-varying features of the impact of monetary policy at a macroeconomic level. This impact can be identified through the monthly observation frequency, which significantly improves the timeliness of the monetary policy transmission mechanism. Unlike the money supply, the impact of interest rate transmission on output shows a lag effect. Interest rate transmission has become smoother with interest rate marketization, while the credit transmission mechanism is increasingly blocked by fiscal policy coordination.
Finally, the business cycle has a significant impact on the transmission mechanism of monetary policy. We find that both the output effect and the price effect of this mechanism are more fluent during an economic boom than in a recession. Thus, monetary policy transmission is obviously cyclical. However, compared with price-based monetary policies, quantitative monetary policies are more susceptible to the impact of the business cycle.
Keywords:  TVP-FAVAR Model    Mixed Frequency Data    Monetary Policy    Transmission Mechanism
JEL分类号:  C32   E32   E52  
基金资助: * 本文感谢国家自科基金青年项目(71701165)、国家社科基金一般项目(20BJY255)、国家社科基金重大项目(20&ZD081)、国家自科基金面上项目(71973110)、国家自科基金专项项目(71950010)资助。
通讯作者:  董青马,经济学博士,副教授,西南财经大学中国金融研究中心,E-mail:qmdong@swufe.edu.cn.   
作者简介:  尚玉皇,经济学博士,副教授,西南财经大学中国金融研究中心、金融安全协同创新中心,E-mail:syh@swufe.edu.cn.赵 芮,经济学硕士,西南财经大学中国金融研究中心,E-mail:18982779065@163.com.
引用本文:    
尚玉皇, 赵芮, 董青马. 混频数据信息下的时变货币政策传导行为研究——基于混频 TVP-FAVAR模型[J]. 金融研究, 2021, 487(1): 13-30.
SHANG Yuhuang, ZHAO Rui, DONG Qingma. The Time-varying Transmission Mechanism of Monetary Policy with Mixed Frequency Data: Evidence from MF-TVP-FAVAR Model. Journal of Financial Research, 2021, 487(1): 13-30.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2021/V487/I1/13
[1] 卞志村、孙慧智和曹媛媛,2012,《金融形势指数与货币政策反应函数在中国的实证检验》,《金融研究》第8期,第44~55页。
[2] 陈创练、龙晓旋和姚树洁,2018,《货币政策、汇率波动与通货膨胀的时变成因分析》,《世界经济》第4期,第3~27页。
[3] 陈创练和郑挺国,2016,《时变参数泰勒规则及央行货币政策取向研究》,《经济研究》第8期,第43~54页。
[4] 刘达禹、赵婷婷和刘金全,2016,《我国价格型与数量型货币政策工具有效性的实施对比及其政策残余信息估计》,《经济学动态》第10期,第63~75页。
[5] 刘金全和石睿柯,2017,《利率双轨制与货币政策传导效率:理论阐释和实证检验》,《经济学家》第12期,第66~74页。
[6] 刘金全和石睿柯,2018,《人民币汇率变动的价格传递效应-基于SV-TVP-FAVAR模型的实证分析》,《工业技术经济》第5期,第63~71页。
[7] 刘金全和解瑶姝,2016,《“新常态”时期货币政策时变反应特征与调控模式选择》,《金融研究》第9期,第1~17页。
[8] 刘金全和张龙,2019,《中国混频金融状况指数的经济增长预测效果与检验》,《统计与信息论坛》第1期,第30~39页。
[9] 刘尧成和庄雅淳,2017,《中国不同货币政策中介目标传导机制有效性对比分析》,《金融发展研究》第9期,第32~39页。
[10] 马理、何梦泽和刘艺,2016,《基于适应性预期的货币政策传导研究》,《金融研究》第8期,第19~33页。
[11] 尚玉皇、郑挺国和夏凯,2015,《宏观因子与利率期限结构:基于混频Nelson-Siegel模型》,《金融研究》第6期,第14~29页。
[12] 尚玉皇和郑挺国,2018,《中国金融形势指数混频测度及其预警行为研究》,《金融研究》第3期,第21~35页。
[13] 王曦、邹文理和叶茂,2012,《中国治理通货膨胀的货币政策操作方式选择》,《中国工业经济》第8期,第5~17页。
[14] 肖卫国和赵阳,2013,《美国非常规货币政策对中国经济的影响-基于零利率下限和符号约束的VAR分析》,《经济管理》第6期,第12~19页。
[15] 徐宁、刘金全和于洋,2017,《理解我国名义利率传导机制有效性的时变特征-基于DSGE模型的理论分析与TVP-VAR模型的实证检验》,《南方经济》第7期,第70~84页。
[16] 战明华、张成瑞和沈娟,2018,《互联网金融发展与货币政策的银行信贷渠道传导》,《经济研究》第4期,第63~76页。
[17] 张成思和孙宇辰,2018,《中国货币政策的信心传导机制》,《财贸经济》第10期,第59~74页。
[18] 张龙和金春雨,2018,《数量型和价格型货币政策工具的有效性对比研究》,《中国工业经济》第1期,第119~136页。
[19] 郑挺国和王霞,2011,《泰勒规则的实时分析及其在我国货币政策中的适用性》,《金融研究》第8期,第31~46页。
[20] 郑挺国和王霞,2013,《中国经济周期的混频数据测度及实时分析》,《经济研究》第6期,第58~70页。
[21] 赵进文和高辉,2004,《中国利率市场化主导下稳健货币政策规则的构建及应用》,《经济学》第1期,第42~64页。
[22] Ball L.,1999. “Efficient Rules for Monetary Policy” International Finance, 2(1):63~83.
[23] Bernanke B.S., J. Boivin,P. Eliasz, 2005. “Measuring the Effects of Monetary Policy: A Factor-augmented Vector Autoregressive (FAVAR) Approach” Quarterly Journal of Economics, 120(1):387~422.
[24] Boinet V., C. Martin, 2008. “Targets, Zones, and Asymmetries: A Flexible Nonlinear Model of Recent UK Monetary Policy” Oxford Economic Paper, 160(3) :423~439.
[25] Ellis C., Mumtaz H., Zabczyk P., 2014. “What Lies Beneath? A Time-varying FAVAR Model for the UK Transmission Mechanism” The Economic Journal ,124(576) :668~699.
[26] Franta M.,2011. “Identification of Monetary Policy Shocks in Japan Using Sign Restrictions within the TVP-VAR Framework” Institute for Monetary and Economic Studies, Bank of Japan. No. 11-E-13.
[27] Ghysels E., Sinko A., Valkanov R. 2007. “MIDAS Regressions: Further Results and New Directions.” Econometric Reviews, 26(1) :53-90.
[28] Kilian L., Murphy D.P.,2012. “Why Agnostic Sign Restrictions are not Enough: Understanding the Dynamics of Oil Market VAR Models” Journal of the European Economic Association, 10(5) :1166~1188.
[29] Koop, G., D. Korobilis,2014. “A New Index of Financial Condition” European Economic Review,71:101~116.
[30] Korobilis D., 2013. “Assessing the Transmission of Monetary Policy using Time-Varying Parameter Dynamic Factor Models” Oxford Bulletin of Economics and Statistics 75(2) :157~179.
[31] Nakajima J., West M.,2013. “Bayesian Analysis of Latent Threshold Dynamic Models” Journal of Business and Economic Statistics, 31(2) :151~164.
[32] Primiceri G. E., 2005. “Time-varying Structural Vector Auto-regressions and Monetary Policy” Review of Economic Studies, 72(3) :821~852.
[33] Schorfheide, F., Song, D., 2015. “Real-time Forecasting with a Mixed-frequency VAR” Journal of Business & Economic Statistics, 33(3) :366-380.
[34] Uhlig H., 2005. “What are the Effects of Monetary Policy on output? Results from an Agnostic Identification Procedure” Journal of Monetary Economics, 52(2) :381~419.
[1] 庄子罐, 贾红静, 刘鼎铭. 居民风险偏好与中国货币政策的宏观经济效应——基于DSGE模型的数量分析[J]. 金融研究, 2020, 483(9): 40-58.
[2] 侯成琪, 黄彤彤. 流动性、银行间市场摩擦与借贷便利类货币政策工具[J]. 金融研究, 2020, 483(9): 78-96.
[3] 陈经伟, 姜能鹏. 中国OFDI技术创新效应的传导机制——基于资本要素市场扭曲视角的分析[J]. 金融研究, 2020, 482(8): 74-92.
[4] 马勇, 付莉. “双支柱”调控、政策协调搭配与宏观稳定效应[J]. 金融研究, 2020, 482(8): 1-17.
[5] 黄继承, 姚驰, 姜伊晴, 牟天琦. “双支柱”调控的微观稳定效应研究[J]. 金融研究, 2020, 481(7): 1-20.
[6] 邓路, 刘欢, 侯粲然. 金融资产配置与违约风险:蓄水池效应,还是逐利效应?[J]. 金融研究, 2020, 481(7): 172-189.
[7] 郝大鹏, 王博, 李力. 美联储政策变化、国际资本流动与宏观经济波动[J]. 金融研究, 2020, 481(7): 38-56.
[8] 殷兴山, 易振华, 项燕彪. 总量型和结构型货币政策工具的选择与搭配——基于结构性去杠杆视角下的分析[J]. 金融研究, 2020, 480(6): 60-77.
[9] 张礼卿, 钟茜. 全球金融周期、美国货币政策与“三元悖论”[J]. 金融研究, 2020, 476(2): 15-33.
[10] 戴魁早, 刘友金. 市场化改革能推进产业技术进步吗?——中国高技术产业的经验证据[J]. 金融研究, 2020, 476(2): 71-90.
[11] 杨继生, 向镜洁. 货币传导异质性与实体经济流动性配置的“马太效应”[J]. 金融研究, 2020, 485(11): 40-57.
[12] 罗煜, 张祎, 朱文宇. 基于银行流动性管理视角的宏观审慎与货币政策协调研究[J]. 金融研究, 2020, 484(10): 19-37.
[13] 谭小芬, 李源, 苟琴. 美国货币政策推升了新兴市场国家非金融企业杠杆率吗?[J]. 金融研究, 2019, 470(8): 38-57.
[14] 贾盾, 孙溪, 郭瑞. 货币政策公告、政策不确定性及股票市场的预公告溢价效应——来自中国市场的证据[J]. 金融研究, 2019, 469(7): 76-95.
[15] 姜富伟, 郭鹏, 郭豫媚. 美联储货币政策对我国资产价格的影响[J]. 金融研究, 2019, 467(5): 37-55.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[7] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[8] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[9] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[10] 刘莎莎, 孔高文. 信息搜寻、个人投资者交易与股价联动异象——基于股票送转的研究[J]. 金融研究, 2017, 449(11): 143 -157 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1