Please wait a minute...
金融研究  2020, Vol. 481 Issue (7): 114-133    
  本期目录 | 过刊浏览 | 高级检索 |
数字金融发展是否存在马太效应?——贫困户与非贫困户的经验比较
王修华, 赵亚雄
湖南大学金融与统计学院,湖南长沙 410079
Does the Matthew Effect Exist in Digital Finance Development?Empirical Evidence from Poor and Non-Poor Households
WANG Xiuhua, ZHAO Yaxiong
College of Finance and Statistics, Hunan University
下载:  PDF (633KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 数字普惠金融发展是否存在马太效应,贫困户和非贫困户之间的收入不平等是否会因此而加剧值得深入研究。基于中国劳动力动态调查和北京大学数字普惠金融指数,从数字金融的覆盖广度和使用深度来考察数字金融发展是否存在马太效应及其作用机制。结果表明:贫困户可借助数字金融平滑生存型消费和积累发展型要素,但效果并不显著,而非贫困户在有效利用数字金融功能防范风险、平滑消费、积累要素的同时,还能休闲娱乐,数字金融发展的马太效应明显;不同数字金融产品的马太效应具有显著差异,数字征信的效应最大,数字信贷、数字支付次之;数字金融发展对不同收入差距类型的影响具有显著异质性,对经营性收入差距的影响最为明显。本文为研究数字普惠金融提供了新的视角,可为未来数字金融缩小收入差距政策的制定提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王修华
赵亚雄
关键词:  数字金融  数字鸿沟  马太效应  作用机制    
Summary:  The problem of imbalanced and inadequate development in the financial sector is prominently reflected in the allocation of financial resources. Financial development in rural areas is relatively backward and the financing needs of disadvantaged groups such as poor households have not been effectively met. Digital financial inclusion is an important carrier for the development of inclusive finance, as it can effectively expand the coverage of inclusive finance and improve the efficiency of financial resource allocation. However, the development of digital financial inclusion is constrained by factors such as the digital divide. Due to the uneven distribution of digital technologies and existing developmental obstacles, vulnerable groups are likely to encounter new financial exclusions such as “tool exclusion” and “evaluation exclusion” due to their lack of Internet tools and financial literacy. Is there a Matthew effect in digital inclusive financial development? If so, will income inequality between poor and non-poor households expand as a result?
Using the seeming unrelated regression method (SUR) with the digital inclusive financial index compiled by the Peking University Digital Finance Center, matched with data from China's Labor Force Dynamic Survey (CLDS), we look at poor and non-poor households. We demonstrate the existence of the Matthew effect in digital financial development and study potential mechanisms. We provide a new perspective on digital financial inclusion and give advice for overcoming the imbalances in financial development through the formulation of policies to reduce the income gap in the post-poverty alleviation era.
We find that digital finance stimulates livelihood consumption smoothing and the development factor accumulation of poor households, albeit insignificantly. Digital finance significantly facilitates the risk prevention, consumption smoothing, factor accumulation and even entertainment of non-poor households, which proves the existence of the Matthew effect. The Matthew effect differs between digital finance products; the Matthew effect for digital credit collection is greater than that for digital credit and digital payment. The impacts of digital finance on different income disparity types are heterogeneous over the course of digital finance's development, especially for the operating income disparity.
This paper makes several contributions. First, in the context of winning the battle against poverty, we systematically study for the first time whether the Matthew effect exists in the process of digital financial development and explore the mechanisms of the differences in the impact of digital finance on poor and non-poor households, enriching the literature on digital finance and clarifying the causes of the current imbalances in digital financial services for the rich and poor. Second, we explore whether there are differentiated Matthew effects for different digital financial products for poor and non-poor households and investigate the heterogeneous impacts of digital finance on different types of income gaps at a micro level. Third, we supplement the literature on digital finance and the Matthew effect, enriching theories of digital finance development and providing theoretical and empirical support for the establishment of a fair and effective income distribution system.
Based on our empirical conclusions, we should focus on the following three goals to reduce the Matthew effect of digital financial development. First, for poor households who do not have the ability to escape poverty, the government should strengthen the poverty alleviation effort by offering education and improving the households' financial literacy by multiple methods to overcome the self-exclusion brought by digital technology. Second, we should encourage digital financial platforms and traditional financial institutions to innovate, to strengthen online channels, to continuously improve digital financial functions and to fully tap the functions of digital financial usage and digital support services such as digital insurance and digital investment to improve the utility and affordability of digital finance for poor households. Third, we should increase investments in the communication infrastructure of poor villages and towns, implement the “Internet Equipment to the Countryside” plan, popularize digital terminals and use 5G technology to extend the radius of financial services to overcome the tool exclusion of poor households so that poor households in remote areas can enjoy high-quality financial services.
Keywords:  Digital Finance    Digital Divide    Matthew Effect    Working Mechanism
JEL分类号:  D01   G21   Q14  
基金资助: * 本文感谢国家社科基金重点项目“贫困脆弱性视角下金融减贫的机理、效应与政策优化研究”(18AJL009)的资助。
作者简介:  王修华,金融学博士,教授,湖南大学金融与统计学院,E-mail:wangxiuhua925@ 126.com.
赵亚雄,金融学博士研究生,湖南大学金融与统计学院,E-mail:zhaoyaxiong0123@126.com.
引用本文:    
王修华, 赵亚雄. 数字金融发展是否存在马太效应?——贫困户与非贫困户的经验比较[J]. 金融研究, 2020, 481(7): 114-133.
WANG Xiuhua, ZHAO Yaxiong. Does the Matthew Effect Exist in Digital Finance Development?Empirical Evidence from Poor and Non-Poor Households. Journal of Financial Research, 2020, 481(7): 114-133.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2020/V481/I7/114
[1] 贝多广和莫秀根,2019,《包容、健康、负责任——中国普惠金融发展报告(2019)》,中国金融出版社,第35~36页。
[2] 北京大学数字金融研究中心课题组(郭峰、孔涛、王靖一、张勋、程志云、阮方圆、孙涛、王芳),2016,《中国数字普惠金融指标体系与指数编制》,北京大学数字金融研究中心工作论文。
[3] 程名望、史清华、Jin Yanhong和盖庆恩,2015,《农户收入差距及其根源:模型与实证》,《管理世界》第7期,第17~28页。
[4] 程名望和张家平,2019,《新时代背景下互联网发展与城乡居民消费差距》,《数量经济技术经济研究》第7期,第22~41页。
[5] 傅秋子和黄益平,2018,《数字金融对农村金融需求的异质性影响——来自中国家庭金融调查与北京大学数字普惠金融指数的证据》,《金融研究》第11期,第68~84页。
[6] 何婧和李庆海,2019,《数字金融使用与农户创业行为》,《中国农村经济》第1期,第112~126页。
[7] 胡金焱、李建文和张博,2018,《P2P网络借贷是否实现了普惠金融目标》,《世界经济》第11期,第169~192页。
[8] 黄益平和黄卓,2018,《中国的数字金融发展:现在与未来》,《经济学(季刊)》第4期,第1489~1502页。
[9] 李博和董亮,2013,《互联网金融的模式与发展》,《中国金融》第10期,第19~21页。
[10] 李克穆,2016,《互联网金融的创新与风险》,《管理世界》第2期,第1~2页。
[11] 李扬,2017,《“金融服务实体经济”辨》,《经济研究》第6期,第4~16页。
[12] 连玉君、彭方平和苏治,2010,《融资约束与流动性管理行为》,《金融研究》第10期,第158~171页。
[13] 刘传明、王卉彤和魏晓敏,2017,《中国八大城市群互联网金融发展的区域差异分解及收敛性研究》,《数量经济技术经济研究》第8期,第3~20页。
[14] 邱泽奇、张樹沁、刘世定和许英康,2016,《从数字鸿沟到红利差异——互联网资本的视角》,《中国社会科学》第10期,第93~115+203~204页。
[15] 沈悦和郭品,2015,《互联网金融、技术溢出与商业银行全要素生产率》,《金融研究》第3期,第160~175页。
[16] 宋晓玲和侯金辰,2017,《互联网使用状况能否提升普惠金融发展水平?——来自25个发达国家和40个发展中国家的经验证据》,《管理世界》第1期,第172~173页。
[17] 王馨,2015,《互联网金融助解“长尾”小微企业融资难问题研究》,《金融研究》第9期,第128~139页。
[18] 王修华,2007,《我国金融发展对居民收入分配影响的实证研究》,《财经理论与实践》第6期,第29~33页。
[19] 王修华、傅勇、贺小金和谭开通,2013,《中国农户受金融排斥状况研究——基于我国8省29县1547户农户的调研数据》,《金融研究》第7期,第139~152页。
[20] 吴晓求,2015,《互联网金融:成长的逻辑》,《财贸经济》第2期,第5~15页。
[21] 谢平和邹传伟,2012,《互联网金融模式研究》,《金融研究》第12期,第11~22页。
[22] 谢绚丽、沈艳、张皓星和郭峰,2018,《数字金融能促进创业吗?——来自中国的证据》,《经济学(季刊)》第4期,第1557~1580期。
[23] 姚耀军和施丹燕,2017,《互联网金融区域差异化发展的逻辑与检验——路径依赖与政府干预视角》,《金融研究》第5期,第127~142页。
[24] 易行健和周利,2018,《数字普惠金融发展是否显著影响了居民消费——来自中国家庭的微观证据》 ,《金融研究》第11期,第47~67页。
[25] 尹志超和张号栋,2018,《金融可及性、互联网金融和家庭信贷约束——基于CHFS数据的实证研究》 ,《金融研究》第11期,第188~206页。
[26] 战明华、张成瑞和沈娟,2018,《互联网金融发展与货币政策的银行信贷渠道传导》,《经济研究》第4期,第63~76页。
[27] 张勋,万广华,张佳佳和何宗樾,2019,《数字经济、普惠金融与包容性增长》,《经济研究》第8期,第71~86页。
[28] Banerjee, A. V., D. Esther and G. Rachel et al., 2015, “The Miracle of Microfinance? Evidence from a Randomized Evaluation”, American Economic Journal: Applied Economics, 7(1):22~53.
[29] Bauer, J. M., 2018, “The Internet and Income Inequality: Socio-economic Challenges in a Hyperconnected Society”,Telecommunications Policy, 42(4):333~343.
[30] Bruhn, M. and I. Love., 2014, “The Real Impact of Improved Access to Finance: Evidence from Mexico”,Journal of Finance, 69(3):1347~1376.
[31] Burgess, R, R. Pande and G. Wong., 2005, “Banking for the Poor: Evidence from India”,Journal of the European Economic Association, 3(2/3):268~278.
[32] Dupas, P. and J. Robinson., 2013, “Why Don't the Poor Save More? Evidence from Health Savings Experiments”,American Economic Review, 103(4):1138~1171.
[33] Hau, H., Y., Huang, H. Shan and Z. Sheng, 2017, “Tech-Fin in China: Credit Market Completion and Its Growth Effect,” Working Paper.
[34] Ho, C. C. and S. F. Tseng, 2006, “From Digital Divide to Digital Inequality: the Global Perspective”,International Journal of Internet & Enterprise Management, 4(3):215~227.
[35] Huang, Y, C. Lin, Z. Sheng and L Wei, 2018, “Fin-Tech Credit and Service Quality”,Working Paper.
[36] Pan, Y, M. Yang, S. Li, et al. 2017, “The Impact of Mobile Payments on the Internet Inclusive Finance”,Journal of Management & Sustainability, 6(4):97.
[37] Pierrakis, Y and L. Collins, 2013, “Crowdfunding: A New Innovative Model of Providing Funding to Projects and Businesses”,Ssrn Electronic Journal.
[1] 朱小能, 周磊. 未预期货币政策与股票市场——基于媒体数据的实证研究[J]. 金融研究, 2018, 451(1): 102-120.
[2] 葛永波, 陈磊, 刘立安. 管理者风格:企业主动选择还是管理者随性施予?——基于中国上市公司投融资决策的证据[J]. 金融研究, 2016, 430(4): 190-206.
[1] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[2] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[3] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[4] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[5] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[6] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[7] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
[8] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[9] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[10] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1