Please wait a minute...
金融研究  2025, Vol. 541 Issue (7): 1-20    
  本期目录 | 过刊浏览 | 高级检索 |
实体经济与金融市场的风险监测与调控
方意, 陈姿羽, 贾妍妍
中国人民大学国家发展与战略研究院,北京 100872;
中央财经大学金融学院,北京 102206;
天津财经大学金融学院,天津 300222
How We Monitor and Control the Risks of Real Economy and Financial Markets
FANG Yi, CHEN Ziyu, JIA Yanyan
National School of Development and Strategy, Renmin University of China;
School of Finance, Central University of Finance and Economics;
School of Finance, Tianjin University of Finance and Economics
下载:  PDF (1937KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文依据金融市场和实体经济的波动率及风险溢出状态定义“稳增长”“防风险”和“稳增长和防风险”三种特殊政策时期,并利用我国经济金融体系进行实证检验,分析金融市场与实体经济在不同时期的风险溢出结构,量化货币政策和财政政策在不同时期的实施效果。本文的主要结论有:(1)经济金融网络中的系统性风险具有周期性和趋势性特征,其中周期性特征主要由金融市场风险驱动,趋势性特征主要由实体经济风险驱动。(2)2007年至2021年一季度,我国经济发展过程中存在2个“稳增长”时期和3个“防风险”时期。这些时期与重大经济金融风险事件有较高的匹配度,而且在这些时期内金融市场和实体经济表现出自身风险高、传染风险高的特征。(3)在“稳增长”时期,实体经济中的工业对金融市场产生较强的风险溢出效应;在“防风险”时期,金融市场中的股票市场对实体经济产生较强的风险溢出效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方意
陈姿羽
贾妍妍
关键词:  稳增长  防风险  混频风险溢出模型  马尔可夫区制转换  TVP-VAR模型    
Summary:  “Stabilizing growth” refers to maintaining steady economic growth, while “risk prevention” refers to safeguarding against financial risks. Finance is at the core of the modern economy, and maintaining financial stability while preventing financial risks is crucial for ensuring high-quality economic development. Conversely, stable economic development helps to prevent and resolve various risks that may arise during economic operations. However, achieving the goals of stabilizing growth and preventing risks is challenging.
First, the goal of “stabilizing growth” faces challenges. In recent years, China's economy has experienced some downward pressure, making it urgent to ensure healthy and stable economic growth, highlighting the need to identify economic downturn risks especially important. In terms of investment, since the onset of the “new normal” in the economy, the country's growth rate has shifted gears, and corporate profitability has declined, reducing corporate investment willingness. On the consumption side, the slowdown in residents' income growth has led to a deceleration in consumption growth.
Second, achieving the “risk prevention” goal should not be taken lightly. The negative impacts of the global pandemic have not yet dissipated, and geopolitical conflicts continue to escalate, exacerbating financial fragility risks globally. Financial markets, as high-frequency trading markets, are highly susceptible to external shocks, with risks rapidly rising in a short period.
This paper proposes two objectives: First, to dynamically monitor the risk status and risk spillovers in the real economy and financial markets and, from a network perspective, identify periods of high risk in both, thus determining whether a focus on stabilizing growth or preventing risks is needed during different periods. Second, after identifying the policy regulation targets for different periods, this paper explores the effects of various macroeconomic policies to implement the optimal regulatory policies during each period.
To achieve this, the paper first employs a mixed-frequency risk spillover approach to construct risk spillover indicators, using these indicators to assess the spillover relationship between the financial market and the real economy. Second, it uses the Markov regime-switching model to identify high-and low-risk states in both the financial market and the real economy. By combining the net risk spillover indicators between the financial market and the real economy with high-risk state indicators, the paper identifies other periods for “stabilizing growth” or “preventing risks” to address risk warning issues over time. Finally, the paper uses a TVP-VAR model to examine the regulatory effects of different types of macroeconomic policies during various periods, providing recommendations for policymakers on implementing macroeconomic policies.
The main contributions of this paper include two aspects: First, it explicitly defines the conditions for “stabilizing growth” and “preventing risks” periods. The paper argues that two prerequisites must be met: 1) stabilizing growth cannot come at the cost of significantly increasing financial risks, and preventing risks must also consider stable economic development, with coordination between the two objectives; 2) policymakers should focus on extreme risks when implementing regulatory measures and avoid frequent interventions. Second, it compares and analyzes the effects of different types of policies during various periods. The paper innovatively uses the TVP-VAR model to examine how monetary and fiscal policies affect risk spillovers and volatility between the financial market and the real economy during different periods. By comparing the implementation effects of different economic policies, the paper contributes to providing theoretical guidance for macroeconomic policy regulation aimed at “stabilizing growth” and “preventing risks.”
Based on the empirical analysis, the paper suggests that, in the short term, efforts to prevent systemic risks in the economic and financial network should focus on the financial market, while in the long term, the emphasis should shift to the real economy. For short-term regulation of systemic risks, attention should be directed toward the frequent fluctuations of the financial market. Conversely, for long-term regulation, the focus should be on the long-term trend changes in real economy risks. Additionally, during “stabilizing growth” periods, efforts should primarily focus on stabilizing industrial growth, while in “preventing risks” periods, priority should be given to preventing risks in the stock market. Finally, volatility and net risk spillover indicators can be combined to provide timely risk warnings. To ensure the effectiveness of policy regulation, interventions should target relatively extreme risks and should not be too frequent, with different focuses during different periods.
Keywords:  Maintaining Stable Growth    Preventing Risks    Mixed Frequency Risk Spillover Model    Markov Regime Switching Model    TVP-VAR Model
JEL分类号:  G10   E20   O29  
基金资助: * 本文感谢国家社会科学基金重大项目(23&ZD058)、国家自然科学基金面上项目(72173144)、北京市社会科学基金青年学术带头人项目(24DTR018)和国家社会科学基金青年项目(23CJY036)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  贾妍妍,经济学博士,副教授,天津财经大学金融学院,E-mail:jiayanyan2020@163.com.   
作者简介:  方 意,经济学博士,教授,中国人民大学国家发展与战略研究院,E-mail:fangyi@ruc.edu.cn.
陈姿羽,经济学硕士,中央财经大学金融学院,E-mail:chenzy0129@outlook.com
引用本文:    
方意, 陈姿羽, 贾妍妍. 实体经济与金融市场的风险监测与调控[J]. 金融研究, 2025, 541(7): 1-20.
FANG Yi, CHEN Ziyu, JIA Yanyan. How We Monitor and Control the Risks of Real Economy and Financial Markets. Journal of Financial Research, 2025, 541(7): 1-20.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V541/I7/1
[1] 陈创练、高锡蓉和刘晓彬,2022,《“稳增长”与“防风险”双目标的宏观调控政策抉择》,《金融研究》第1期,第1~19页。
[2] 陈小亮,2025,《宏观政策取向一致性评估探析:基于健全宏观经济治理体系的视角》,《改革》第1期,第16~25页。
[3] 陈小亮和马啸,2016,《“债务—通缩”风险与货币政策财政政策协调》,《经济研究》第8期,第28~42页。
[4] 董兵兵、徐慧伦和谭小芬,2021,《货币政策能够兼顾稳增长与防风险吗?——基于动态随机一般均衡模型的分析》,《金融研究》第4期,第19~37页。
[5] 方意和黄丽玲,2019,《系统性风险、抛售博弈与宏观审慎政策》,《经济研究》第9期,第41~55页。
[6] 方意,2021,《前瞻性与逆周期性的系统性风险指标构建》,《经济研究》第9期,第191~208页。
[7] 李政、刘淇和梁琪,2019,《基于经济金融关联网络中的中国系统性风险防范研究》,《统计研究》第2期,第24~36页。
[8] 刘冲、傅家范和周边,2019,《金融市场冲击、融资成本与经济波动》,《国际金融研究》第3期,第76~86页。
[9] 马勇和付莉,2020,《“双支柱”调控、政策协调搭配与宏观稳定效应》,《金融研究》第8期,第1~17页。
[10] 王学凯和姜卫民,2020,《去杠杆与稳增长能同时实现吗?:基于58个国家面板数据的实证研究》,《世界经济研究》第7期,第76~89页。
[11] 杨子晖,2020,《金融市场与宏观经济的风险传染关系——基于混合频率的实证研究》,《中国社会科学》第12期,第160~180页。
[12] 张晓晶和刘磊,2020,《宏观分析新范式下的金融风险与经济增长——兼论新型冠状病毒肺炎疫情冲击与在险增长》,《经济研究》第6期,第4~21页。
[13] Abbassi, P., R. Iyer and J. Peydró,2016, “Securities Trading by Banks and Credit Supply: Micro-evidence From the Crisis”, Journal of Financial Economics, 121(3),pp.569~594.
[14] Allen, F., A. Babus and E. Carletti,2012, “Asset Commonality, Debt Maturity and Systemic Risk”, Journal of Financial Economics, 104(3),pp.519~534.
[15] Benoit, S., J. E. Colliard, C. Hurlin and C. Pérignon,2017, “Where the Risks Lie:A Survey on Systemic Risk”, Review of Finance, 21(1),pp.109~152.
[16] Brownlees, C. and R. F. Engle,2017, “SRISK,pp.A Conditional Capital Shortfall Measure of Systemic Risk”, Review of Financial Studies, 30(1),pp.48~79.
[17] Chira, I., J. Madura and A. M. Viale,2013, “Bank Exposure to Market Fear”, Journal of Financial Stability,9(4),pp.451~459.
[18] Cotter J., M. Hallam and K. Yilmaz, 2020, “Macro-Financial Spillovers”, KU-TUSIAD Economic Research Forum, Working Paper, 1704.
[19] Engle, F. R. and G. J. Rangel,2008, “The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomics Causes”, The Review of Financial Studies,21 (3),pp.1187~1222.
[20] Krugman, P., 2015, “Rethinking Japan”, New York Times, October 20,The Opinions Pages.
[21] Primiceri, G., E., 2005, “Time Varying Structural Vector Autoregressions and Monetary Policy”, The Review of Economic Studies, 72(3),pp.821~852.
[22] Shleifer, A. and R. W. Vishny,2010, “Asset Fire Sales and Credit Easing”. American Economic Review, 100(2),pp.46~50.
[1] 李敏波, 梁爽. 监测系统性金融风险——中国金融市场压力指数构建和状态识别[J]. 金融研究, 2021, 492(6): 21-38.
[2] 董兵兵, 徐慧伦, 谭小芬. 货币政策能够兼顾稳增长与防风险吗?——基于动态随机一般均衡模型的分析[J]. 金融研究, 2021, 490(4): 19-37.
[3] 钱宗鑫, 王芳, 孙挺. 金融周期对房地产价格的影响——基于SV-TVP-VAR模型的实证研究[J]. 金融研究, 2021, 489(3): 58-76.
[4] 方先明, 权威. 信贷型影子银行顺周期行为检验[J]. 金融研究, 2017, 444(6): 64-80.
[5] 金鹏辉, 王营, 张立光. 稳增长条件下的金融摩擦与杠杆治理[J]. 金融研究, 2017, 442(4): 78-94.
[6] 刘金全, 解瑶姝. “新常态”时期货币政策时变反应特征与调控模式选择[J]. 金融研究, 2016, 435(9): 1-17.
[1] 李青原, 喻淼, 董燕飞, 黄炜. 数字基础设施与家庭风险金融资产投资——基于“宽带中国”政策的证据[J]. 金融研究, 2025, 540(6): 133 -151 .
[2] 赵静梅, 何宝露. 企业声誉与违规行为——基于数字经济视角的新考证[J]. 金融研究, 2025, 541(7): 76 -94 .
[3] 邹伟, 鲁元平. 末端基础设施建设与农村包容性增长——兼论快递物流在全国统一大市场建设中的作用[J]. 金融研究, 2025, 541(7): 113 -130 .
[4] 温慧愉, 高昊宇. 碳交易管控的债券定价效应——来自中国碳排放权交易试点的经验证据[J]. 金融研究, 2025, 541(7): 149 -167 .
[5] 尹力博, 辛宇. 中国资本市场中的创新质量溢价:风险补偿还是错误定价?[J]. 金融研究, 2025, 541(7): 168 -187 .
[6] 丁璇, 杨道广, 张新民. 中介机构固定搭配:“合作”抑或“合谋”——基于债券信用评级的经验证据[J]. 金融研究, 2025, 539(5): 171 -187 .
[7] 翟光宇, 薛严慨, 李静怡. 新一轮个税改革与居民消费潜能——基于综合课征和专项附加扣除的研究[J]. 金融研究, 2025, 540(6): 39 -57 .
[8] 曹廷求, 庞念伟. 政府白名单的信贷引导效应研究[J]. 金融研究, 2025, 540(6): 114 -132 .
[9] 张同斌, 李媛, 王蕾. 政策沟通、公众关注与经济不确定性——基于文本大数据的指数构建与实证研究[J]. 金融研究, 2025, 541(7): 21 -38 .
[10] 熊鹏翀, 纪洋, 朱孟楠. 市场化征信机构与中小企业融资约束——来自世界银行企业调查数据的微观证据[J]. 金融研究, 2025, 541(7): 39 -56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1