Please wait a minute...
金融研究  2024, Vol. 523 Issue (1): 150-168    
  本期目录 | 过刊浏览 | 高级检索 |
分析师利空关注与公司投资效率:“萝卜”加“大棒”
陈少凌, 周开国, 杨海生, 钟嘉颖
暨南大学经济学院,广东广州 510632;首都经济贸易大学金融学院,北京 100070;中山大学岭南学院,广东广州 510275
Analysts' Negative Coverage and Corporate Investment Efficiency: Carrot and Stick
CHEN Shaoling, ZHOU Kaiguo, YANG Haisheng, ZHONG Jiaying
School of Economics, Jinan University; School of Finance, Capital University of Economics and Business; Lingnan College, Sun Yat-sen University
下载:  PDF (917KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文以2009—2020年我国A股上市公司的485366份分析师报告为研究样本,尽可能剥离乐观偏差干扰,考察分析师关注对公司投资效率的真实影响。研究表明:第一,分析师的利空关注会同时抑制过度投资和缓解投资不足,对公司投资效率具有显著的提升作用。第二,基于双重纠偏LASSO回归,修正影响机制中可能存在的估计偏误,发现分析师利空关注对投资效率的积极影响,源自施加卖空压力的“大棒效应”以及提供信息增强的“萝卜效应”,且上述两种效应均会通过机构投资者和资本市场这两个渠道共同发力。第三,多中介因果路径分析显示,分析师利空关注的“萝卜效应”强于“大棒效应”,机构投资者渠道的效力强于资本市场渠道的效力。本文为探讨分析师在资本市场中的角色提供了新视角,补充了中国情境下分析师关注影响公司投资效率的经验证据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈少凌
周开国
杨海生
钟嘉颖
关键词:  分析师利空关注  公司投资效率  信息中介  双重纠偏LASSO  多中介因果路径分析    
Summary:  As important information intermediaries, analysts play an indispensable role in ensuring the quality of information disclosure in the capital market by thoroughly mining valuable information and providing it to investors, thus enhancing market transparency and investment efficiency. However, the literature has not yet reached a consensus on whether analyst coverage has a positive impact on companies. Analysts' optimism bias is considered the main reason why their coverage does not always exert a positive effect. This bias not only interferes with analysts' due diligence but also triggers widespread questioning of the professional ethics and competence of securities researchers, posing a potential threat to the quality of information and operational efficiency of the capital market. In response to this issue, scholars have conducted extensive studies of analysts' capabilities and intentions. However, optimism bias remains prevalent even among analysts with high levels of skill or weak private motives. Therefore, effectively stripping away the interference of optimism bias is an important prerequisite for accurately assessing the value of analysts as information intermediaries. Considering that domestic analysts exhibit a significantly higher optimism bias than their foreign counterparts, exploratory studies are particularly important, and the focus on analysts' negative coverage provides a suitable research perspective.
Based on the aforementioned ideas, this paper focuses on corporate investment efficiency and comprehensively examines the compound impact and mechanism of action of analysts' negative coverage based on a sample of 485,366 sell-side analyst reports on A-share listed companies in China from 2009 to 2020. The main findings are as follows. First, analysts' negative coverage can simultaneously suppress overinvestment and alleviate underinvestment, significantly enhancing corporate investment efficiency. Second, the positive impact of analysts' negative coverage on corporate investment efficiency is more pronounced when companies face greater market or internal pressures, and negative recommendations have a stronger inhibitory effect on inefficient investments when they are issued by more capable and diligent analysts. Third, after correcting for potential estimation biases in the analysis of mediating effects using doubly debiased lasso (DDL) regression, it is found that the impact of analysts' negative coverage on investment efficiency encompasses both the “stick effect” of exerting short-selling pressure and the “carrot effect” of providing enhanced information. Finally, multi-mediation causal path analysis (MCPA) shows that the carrot effect is stronger than the stick effect, and the direct efficacy of institutional investors is stronger than the indirect efficacy of the capital market.
Our paper makes the following three contributions. First, by extracting negative recommendations from analyst coverage, the paper provides a scientific perspective free from the interference of optimism bias, refining the accurate interpretation of analysts' information intermediary function. In recent years, the frequent occurrence of listed company violations involving analysts in China's capital market has raised widespread concern and deep anxiety in both academic and business circles about analysts' failure to fulfill their “gatekeeper” duties. Against this backdrop, this study will help analysts return to their professional function as objective information intermediaries. Second, given the reality of severe optimism bias in Chinese analyst reports, this paper employs methods such as subsample regression, propensity score matching, CEM, and quantile regression to correct for the sparsity and asymmetry of the negative coverage sample from multiple angles. The results provide robust evidence for the conclusions of this study and offer a versatile scientific reference for solving the problem of scarce samples in empirical research. Third, leveraging the latest research findings on mediation analysis methodologies such as DDL regression and MCPA, this paper provides empirical evidence of how analyst attention affects corporate investment efficiency and offers feasible and reliable solutions for correcting biased estimates caused by omitted variables, testing the interconnectivity among multiple mechanisms, and assessing their relative importance. This enriches the cutting-edge technical methods for testing mechanisms. At a crucial time for the stimulation of corporate vitality and steady advancement of the reform of the registration system, this research will help to clarify policy directions and enhance governance efficiency.
Keywords:  Analysts' Negative Coverage    Investment Efficiency    Mechanism Test    Doubly Debiased LASSO    Multi-Mediation Causal Path Analysis
JEL分类号:  G21   G31  
基金资助: *本文感谢国家社会科学基金重大项目(20&ZD103)、国家自然科学基金面上项目(72373053,72173141)、教育部人文社会科学研究规划基金项目(21YJA790005)、广东省自然科学基金面上项目(2023A1515012434)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  周开国,博士,教授,首都经济贸易大学金融学院,E-mail: zhoukg@cueb.edu.cn.   
作者简介:  陈少凌,博士,副教授,暨南大学经济学院,E-mail: tchensl@jnu.edu.cn.
杨海生,博士,副教授,中山大学岭南学院, E-mail: yhaish@mail.sysu.edu.cn.
钟嘉颖,博士研究生,中山大学岭南学院, E-mail: zhongjy69@mail2.sysu.edu.cn.
引用本文:    
陈少凌, 周开国, 杨海生, 钟嘉颖. 分析师利空关注与公司投资效率:“萝卜”加“大棒”[J]. 金融研究, 2024, 523(1): 150-168.
CHEN Shaoling, ZHOU Kaiguo, YANG Haisheng, ZHONG Jiaying. Analysts' Negative Coverage and Corporate Investment Efficiency: Carrot and Stick. Journal of Financial Research, 2024, 523(1): 150-168.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V523/I1/150
[1]陈少凌、李广众、杨海生和梁伟娟,2021,《规制性壁垒、异质不确定性与企业过度投资》,《经济研究》第5期,第162~179页。
[2]江艇,2022,《因果推断经验研究中的中介效应与调节效应》,《中国工业经济》第5期,第100~120页。
[3]李春涛、胡宏兵和谭亮,2013,《中国上市银行透明度研究——分析师盈利预测和市场同步性的证据》,《金融研究》第6期,第118~132页。
[4]刘胜强、林志军、孙芳城和陈汉文,2015,《融资约束、代理成本对企业R&D投资的影响——基于我国上市公司的经验证据》,《会计研究》第11期,第62~68页。
[5]许年行、江轩宇、伊志宏和徐信忠,2012,《分析师利益冲突、乐观偏差与股价崩盘风险》,《经济研究》第7期,第127~140页。
[6]吴超鹏、郑方镳和杨世杰,2013,《证券分析师的盈余预测和股票评级是否具有独立性?》,《经济学(季刊)》第3期,第935~958页。
[7]张宗新和杨万成,2016,《声誉模式抑或信息模式:中国证券分析师如何影响市场?》,《经济研究》第9期,第104~117页。
[8]Akyol, A. C., Y. Qian, and F. Yu, 2023, “How do Experienced Analysts Improve Price Efficiency?”, Journal of Banking & Finance, 149, 106798.
[9]Barber, B. M., R. Lehavy, M. McNichols, and B. Trueman, 2006, “Buys, Holds, and Sells: The Distribution of Investment Banks' Stock Ratings and the Implications for the Profitability of Analysts' Recommendations”, Journal of Accounting and Economics, 41(1~2), pp. 87~117.
[10]Baron, R. M., and D. A. Kenny, 1986, “The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations”, Journal of Personality and Social Psychology, 51(6), No.1173.
[11]Bernhardt, D., C. Wan, and Z. Xiao, 2016, “The Reluctant Analyst”, Journal of Accounting Research, 54(4), pp. 987~1040.
[12]Blau, B. M., and C. Wade, 2012, “Informed or Speculative: Short Selling Analyst Recommendations”, Journal of Banking & Finance, 36(1), pp.14~25.
[13]Broadstock, D., and X. Chen, 2021, “Corporate Site Visits, Private Monitoring and Fraud: Evidence from China”, Finance Research Letters, 40, 101780.
[14]Brown, L. D., A. C. Call, M. B. Clement, and N. Y. Sharp, 2015, “Inside the‘Black Box’ of Sell‐Side Financial Analysts”, Journal of Accounting Research, 53(1), pp. 1~47.
[15]Brown, J. L., and K. D. Drake, 2014, “Network Ties Among Low-Tax Firms”, The Accounting Review, 89(2), pp. 483~510.
[16]Carpenter, J. N., F. Lu, and R. F. Whitelaw, 2021, “The Real Value of China's Stock Market”, Journal of Financial Economics, 139(3), pp. 679~696.
[17]Chen, X., Q. Cheng, and A. K. Lo, 2014, “Is the Decline in the Information Content of Earnings Following Restatements Short-Lived?”, The Accounting Review, 89(1), pp. 177~207.
[18]Crane, A., and K. Crotty, 2020, “How Skilled are Security Analysts?”, The Journal of Finance, 75(3), pp. 1629~1675.
[19]Crawford, S. S., D. T. Roulstone, and E. C. So, 2012, “Analyst Initiations of Coverage and Stock Return Synchronicity”, The Accounting Review, 87(5), pp. 1527~1553.
[20]Dechow, P. M., A. P. Hutton, and R. G. Sloan, 2000, “The Relation Between Analysts' Forecasts of Long‐Term Earnings Growth and Stock Price Performance Following Equity Offerings”, Contemporary Accounting Research, 17(1), pp. 1~32.
[21]Derrien, F., and A. Kecskés, 2013, “The Real Effects of Financial Shocks: Evidence from Exogenous Changes in Analyst Coverage”, The Journal of Finance, 68(4), pp. 1407~1440.
[22]Di Giuli, A., and P. A. Laux, 2022, “The Effect of Media-Linked Directors on Financing and External Governance”, Journal of Financial Economics, 145(2), pp.103~131.
[23]Edmans, A., I. Goldstein, and W. Jiang, 2012, “The Real Effects of Financial Markets: The Impact of Prices on Takeovers”, The Journal of Finance, 67(3), pp. 933~971.
[24]Fan, Y., and H. Fu, 2020, “Institutional Investors, Selling Pressure and Crash Risk: Evidence from China”, Emerging Markets Review, 42, 100670.
[25]Fang, L., and A. Yasuda, 2009, “The Effectiveness of Reputation as A Disciplinary Mechanism in Sell-Side Research”, The Review of Financial Studies, 22(9), pp. 3735~3777.
[26]Fracassi, C., and G. Tate, 2012, “External Networking and Internal Firm Governance”, The Journal of Finance, 67(1), pp. 153~194.
[27]Francis, B. B., I. Hasan, Y. V. Shen, and Q. Wu, 2021, “Do Activist Hedge Funds Target Female CEOs? The Role of CEO Gender In Hedge Fund Activism”, Journal of Financial Economics, 141(1), pp. 372~393.
[28]Guo, L., F. W. Li, and K. J. Wei, 2020, “Security Analysts and Capital Market Anomalies”, Journal of Financial Economics, 137(1), pp. 204~230.
[29]Guo, Z., D. C'evid, and P. Bühlmann, 2022, “Doubly Debiased LASSO: High-Dimensional Inference Under Hidden Confounding”, Annals of Statistics, 50(3), 1320.
[30]Guo, X., R. Li, J. Liu, and M. Zeng, 2022, “High-Dimensional Mediation Analysis for Selecting DNA Methylation Loci Mediating Childhood Trauma and Cortisol Stress Reactivity”, Journal of the American Statistical Association, 117(539), pp.1110~1121.
[31]Hsieh, J., L. Ng, and Q. Wang, 2023, “How Informative Are Insider Trades and Analyst Recommendations?”, Journal of Banking & Finance, 149, 106787.
[32]Imai, K., L. Keele, and T. Yamamoto, 2010, “Identification, Inference and Sensitivity Analysis for Causal Mediation Effects”, Statistical Science, 25(1), pp.51~71.
[33]Jegadeesh, N., J. Kim, S. D. Krische, and C. M. Lee, 2004, “Analyzing the Analysts: When Do Recommendations Add Value?”, The Journal of Finance, 59(3), pp. 1083~1124.
[34]Jin, X., and J. Yu, 2018, “Government Governance, Executive Networks and Corporate Investment Efficiency”, China Finance Review International, 8(2), pp. 122~139.
[35]Konstantinidi, T., 2022, “Firm Life Cycle, Expectation Errors and Future Stock Returns”, Journal of Banking & Finance, 143, 106591.
[36]Korovkin, V., and A. Makarin, 2023, “Conflict and Intergroup Trade: Evidence from the 2014 Russia-Ukraine Crisis”, American Economic Review, 113(1), pp.34~70.
[37]Kumar, A., V. Rantala, and R. Xu, 2022, “Social Learning and Analyst Behavior”, Journal of Financial Economics, 143(1), pp. 434~461.
[38]Loh, R. K., and R. M. Stulz, 2011, “When Are Analyst Recommendation Changes Influential?”, The Review of Financial Studies, 24(2), pp. 593~627.
[39]Malmendier, U., and Shanthikumar, D., 2014, “Do Security Analysts Speak in Two Tongues?”, The Review of Financial Studies, 27(5), pp. 1287~1322.
[40]Meng, Q., Y. Li, X. Jiang, and K. C. Chan, 2017, “Informed or Speculative Trading? Evidence from Short Selling Before Star and Non-Star Analysts' Downgrade Announcements in An Emerging Market”, Journal of Empirical Finance, 42, pp. 240~255.
[41]Oster, E., 2019, “Unobservable Selection and Coefficient Stability: Theory and Evidence”, Journal of Business & Economic Statistics, 37(2): pp.187~204.
[42]Pursiainen, V., 2022, “Cultural Biases in Equity Analysis”, The Journal of Finance, 77(1), pp. 163~211.
[43]Richardson, S., 2006, “Over-Investment of Free Cash Flow”, Review of Accounting Studies, 11(2), pp. 159~189.
[44]Sualihu, M. A., A. Yawson, and I. Yusoff, 2021, “Do Analysts' Forecast Properties Deter Suboptimal Labor Investment Decisions? Evidence from Regulation Fair Disclosure”, Journal of Corporate Finance, 69, 101995.
[45]Tang, C. H., Y. H. Lee, W.Z. Lu, and L. Wei, 2023, “The Relationship Between Analyst Coverage and Overinvestment, and the Mediating Role of Corporate Governance. Evidence from China”, Journal of Behavioral Finance, 24(4), pp.495~510.
[46]To, T. Y., M. Navone, and E. Wu, 2018, “Analyst Coverage and The Quality of Corporate Investment Decisions”, Journal of Corporate Finance, 51, pp. 164~181.
[47]Zhou, X., 2022, “Semiparametric Estimation for Causal Mediation Analysis with Multiple Causally Ordered Mediators”, Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(3), pp. 794~821.
[48]Zhou, X., and T. Yamamoto, 2023, “Tracing Causal Paths from Experimental and Observational Data”, The Journal of Politics, 85(1), pp. 250~265.
[49]Zhu, L., Q. Chen, S. Yang, and Z. Yi, 2021, “The Role of Analysts in Negative Information Production and Disclosure: Evidence from Short Selling Deregulation in an Emerging Market”, International Review of Economics & Finance, 73, pp. 391~406.
[1] 吴翌琳, 张旻, 于鸿君. 融资方式与企业二元创新路径选择——基于技术创新与非技术创新视角[J]. 金融研究, 2024, 523(1): 38-55.
[2] 吕勇斌, 李志生, 郭懿晨. 逆风前行:台风灾害与银行风险行为[J]. 金融研究, 2024, 523(1): 19-37.
[3] 王修华, 刘锦华. 金融科技能否缓解农村信贷服务的“三角困境”?——基于农村金融机构与金融科技公司合作的视角[J]. 金融研究, 2023, 522(12): 150-168.
[4] 刘岩, 赵雪晴. 银行家问卷调查与信贷周期理论的再检验[J]. 金融研究, 2023, 522(12): 188-206.
[5] 王宇伟, 刘宏雅. 央行言辞沟通与银行信贷投放:总量与结构效应[J]. 金融研究, 2023, 521(11): 78-96.
[6] 潘越, 纪翔阁, 杨玲玲, 宁博. 网络司法拍卖与信贷资源供给[J]. 金融研究, 2023, 521(11): 170-187.
[7] 蔡卫星, 韦庆芳, 林航宇. 数字金融发展的劳动力需求效应 ——来自2000万在线招聘岗位的经验证据[J]. 金融研究, 2023, 520(10): 28-46.
[8] 徐照宜, 巩冰, 陈彦名, 成程. 金融科技、数字化转型与企业突破性创新 ——基于全球专利引用复杂网络的分析[J]. 金融研究, 2023, 520(10): 47-65.
[9] 王辉, 朱家雲, 胡诣聪. 央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角[J]. 金融研究, 2023, 519(9): 1-19.
[10] 李天时, 祝继高. 地方银行业集中度对地方性商业银行贷款配置效率的影响研究[J]. 金融研究, 2023, 519(9): 76-93.
[11] 陈国进, 丁赛杰, 赵向琴. 气候政策、银行风险与宏观审慎监管创新[J]. 金融研究, 2023, 519(9): 38-57.
[12] 李朝前, 沈悦, 姚树洁, 安磊. 金融地理可及性与劳动收入份额——基于融资成本与人力资本结构视角[J]. 金融研究, 2023, 519(9): 150-167.
[13] 朱宁, 曾恒煜, 于之倩. 中国商业银行运营效率研究 ——基于多阶段合作型网络DEA的实证分析[J]. 金融研究, 2023, 518(8): 37-54.
[14] 谢德仁, 史学智. 地区汇总的庞氏利息程度变化与商业银行不良贷款预测[J]. 金融研究, 2023, 518(8): 55-73.
[15] 申宇, 佘楷文, 许闲. 气候风险与银行盈余管理 ——基于金融监管的视角[J]. 金融研究, 2023, 517(7): 116-133.
[1] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115 -129 .
[2] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
[3] 闫先东, 高文博. 中央银行信息披露与通货膨胀预期管理——我国央行信息披露指数的构建与实证检验[J]. 金融研究, 2017, 446(8): 35 -49 .
[4] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[5] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[6] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[7] 梁巨方, 韩乾. 商品期货可以提供潜在组合多样化收益吗?[J]. 金融研究, 2017, 446(8): 129 -144 .
[8] 徐丽鹤, 袁燕. 财富分层、社会资本与农户民间借贷的可得性[J]. 金融研究, 2017, 440(2): 131 -146 .
[9] 陈奎明, 陈通. 关于发放高质量小额贷款的关键因子相关研究[J]. 金融研究, 2017, 440(2): 197 -215 .
[10] 李万福, 杜静, 张怀. 创新补助究竟有没有激励企业创新自主投资——来自中国上市公司的新证据[J]. 金融研究, 2017, 448(10): 130 -145 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1