Please wait a minute...
金融研究  2024, Vol. 523 Issue (1): 131-149    
  本期目录 | 过刊浏览 | 高级检索 |
股票市场与债券市场的风险联动与预测研究——基于机器学习的前沿视角
杨子晖, 张平淼, 林师涵
南方科技大学商学院,广东深圳 518055;中山大学高级金融研究院,广东广州 510275
Risk Co-movement and Forecasting of the Stock Market and Bond Market Based on the Forefront Perspective of Machine Learning
YANG Zihui, ZHANG Pingmiao, LIN Shihan
Business School, Southern University of Science and Technology; Advanced Institute of Finance, Sun Yat-sen University
下载:  PDF (1592KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文采用多元多分位数条件自回归风险价值模型和分位数回归方法,分析我国股票市场与债券市场的尾部风险联动关系。基于股债风险联动新视角,结合前沿机器学习算法构建预测模型,分析发现,股市(债市)风险信息能够有效降低债市(股市)风险预测误差。应用分位数梯度提升模型等机器学习方法,有助于克服传统模型局限性、改善尾部风险预测效果。分行业看,我国股市风险与债市风险之间存在非对称预测关系,多数行业存在“债市风险→股市风险”的单向预测关系,但双向预测关系仅存在于材料、日常消费、金融、房地产等行业。本文对完善我国重点领域风险监测预警体系的政策建议,可为“风险早识别、早预警、早暴露、早处置”提供有益参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨子晖
张平淼
林师涵
关键词:  尾部风险  风险联动  风险预测  机器学习    
Summary:  At the Central Financial Work Conference in October 2023, President Xi Jinping emphasized the need to uphold risk prevention and control as the perennial focus of the financial profession and ensure that risks are identified, revealed, and resolved as early as possible. It remains a key future task for the financial profession to improve the risk monitoring and early-warning system and the ability to reduce and control financial risk. Considering the great attention aroused by tail-risk events, such as the simultaneous crashes of both the stock and bond markets, a major priority is to identify the co-movements of risk across different markets and enhance the risk early-warning system for both the stock and bond markets. In the context of stock-bond risk co-movement, it is of both academic and practical significance to forecast stock market and bond market risk accurately and effectively using state-of-the-art machine learning techniques. This will help to overcome the limitations of traditional risk prediction methods and improve the risk monitoring and early-warning system for both the stock market and bond market. It will also contribute to identifying risk co-movements across different markets, thus preventing extreme risk events like simultaneous crashes of the stock and bond markets.
This paper conducts an analysis based on a sample of Chinese listed companies in the period from January 2015 to September 2022. First, we employ the MVMQ-CAViaR model and quantile regression method to investigate the tail-risk co-movements between the stock market and bond market. Additionally, we distinguish between the heterogeneous risk spillover relationships of companies with and without default records. The results show that stock-bond risk co-movement is more significant for companies that have defaulted.
Next, this paper utilizes state-of-the-art machine learning techniques, namely the quantile regression forest, quantile gradient boosting model, and quantile regression neural network, to construct prediction models for tail risk based on the emerging perspective of stock-bond risk co-movement. On this basis, we further evaluate the bi-directional predictive power between stock market risk and bond market risk using the quantile loss function, quantile goodness of fit, and Diebold-Mariano test. For most prediction models for the “bond market risk → stock market risk” direction, the results indicate that considering the bond market risk increases the robustness and accuracy of the forecasting of stock market risk by improving the goodness of fit and reducing fitting errors. The application of a machine learning framework including the quantile gradient boosting model, quantile regression forest, and quantile regression neural network significantly strengthens the prediction of stock market risk. In contrast, in the prediction model for “stock market risk → bond market risk”, the quantile gradient boosting model outperforms the other models in predicting bond market risk. This is attributable to the gradient boosting method, which corrects fitting errors through iterative learning, thereby better capturing the stock market risk information.
Furthermore, we divide the sample according to industry attributes to assess the heterogeneous predictive power of different models. We find evidence of asymmetric predictive power between stock market risk and bond market risk, in which a unidirectional predictive power for “bond market risk → stock market risk” is documented in most industries while a bi-directional predictive power for “stock market risk → bond market risk” is only evident in the materials, daily consumption, finance, and real estate industries. Meanwhile, under the “stock market risk → bond market risk” prediction framework, the finance industry has the most forecastable bond market risk, as it can be identified by all three machine learning models.
Finally, this paper yields policy implications for strengthening the risk prediction system for key fields in China. First, policy makers should improve the tail-risk early-warning framework for China's capital market using the new perspective of stock-bond risk co-movement. Second, state-of-the-art machine learning techniques should be promoted in the financial regulation field to enhance the financial stability guarantee system. Third, regulators should improve the industry-level financial risk forecasting system and tail-risk early warning for key fields including the finance industry.
Keywords:  Tail Risk    Risk Co-movement    Risk Forecasting    Machine Learning
JEL分类号:  C5   G10  
基金资助: *本文感谢国家社会科学基金重大项目(21&ZD114)、国家社会科学基金项目(23VRC077)的资助。感谢匿名审稿人提出的宝贵意见,文责自负。
通讯作者:  杨子晖,经济学博士,教授,南方科技大学商学院,E-mail: yangzh@sustech.edu.cn.   
作者简介:  张平淼,经济学博士,访问学者,南方科技大学商学院,E-mail: zhangpm3@mail2.sysu.edu.cn.
林师涵,博士研究生,中山大学高级金融研究院,E-mail: linshh23@mail2.sysu.edu.cn.
引用本文:    
杨子晖, 张平淼, 林师涵. 股票市场与债券市场的风险联动与预测研究——基于机器学习的前沿视角[J]. 金融研究, 2024, 523(1): 131-149.
YANG Zihui, ZHANG Pingmiao, LIN Shihan. Risk Co-movement and Forecasting of the Stock Market and Bond Market Based on the Forefront Perspective of Machine Learning. Journal of Financial Research, 2024, 523(1): 131-149.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V523/I1/131
[1]戴志锋、朱皓阳和尹华,2022,《我国石油、黄金、房地产和金融部门间系统风险动态溢出效应研究》,《系统工程理论与实践》第10期,第2603~2616页。
[2]李政、梁琪和方意,2019,《中国金融部门间系统性风险溢出的监测预警研究——基于下行和上行ΔCoES指标的实现与优化》,《金融研究》第2期,第40~58页。
[3]刘程程、苏治和宋鹏,2020,《全球股票市场间风险传染的测度、监管及预警》,《金融研究》第11期,第94~112页。
[4]王重润和王文静,2021,《同业业务对中小银行系统性风险溢出的影响》,《南方金融》第8期,第40~52页。
[5]杨子晖、张平淼和林师涵,2022,《系统性风险与企业财务危机预警——基于前沿机器学习的新视角》,《金融研究》第8期,第152~170页。
[6]杨子晖和李东承,2021,《系统性风险指标是否具有前瞻性的预测能力?》,《经济学(季刊)》第2期,第617~644页。
[7]杨子晖和周颖刚,2018,《全球系统性金融风险溢出与外部冲击》,《中国社会科学》第12期,第69~90+200~201页。
[8]Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi, 2015, “Systemic Risk and Stability in Financial Networks”, American Economic Review, 105(2), pp.564 ~ 608.
[9]Benoit, S., J. E. Colliard, C. Hurlin and C. Pérignon, 2017, “Where the Risks Lie: A Survey on Systemic Risk”, Review of Finance, 21(1), pp.109 ~ 152.
[10]Debarsy, N., C. Dossougoin, C. Ertur and J. Y. Gnabo., 2018, “Measuring Sovereign Risk Spillovers and Assessing the Role of Transmission Channels: A Spatial Econometrics Approach”, Journal of Economic Dynamics and Control, 87, pp.21 ~ 45.
[11]Even-Tov, O., 2017, “When Does the Bond Price Reaction to Earnings Announcements Predict Future Stock Returns?”, Journal of Accounting and Economics, 64(1), pp. 167 ~ 182.
[12]Giglio, S., B. Kelly and S. Pruitt, 2016, “Systemic Risk and the Macroeconomy: An Empirical Evaluation”, Journal of Financial Economics, 119(3), pp.457 ~ 471.
[13]Griffin, P. A., H. A. Hong and J. B. Kim, 2016, “Price Discovery in the CDS Market: The Informational Role of Equity Short Interest”, Review of Accounting Studies, 21(4), pp.1116 ~ 1148.
[14]Han, B., A. Subrahmanyam and Y. Zhou, 2017, “The Term Structure of Credit Spreads, Firm Fundamentals, and Expected Stock Returns”, Journal of Financial Economics, 124(1), pp.147 ~ 171.
[15]Huynh, T. D. and Y. Xia, 2023, “Panic Selling when Disaster Strikes: Evidence in the Bond and Stock Markets”, Management Science, 69(12), pp.7448 ~ 7467.
[16]Jiang, S. and H. Fan, 2018, “Credit Risk Contagion Coupling with Sentiment Contagion”, Physica A: Statistical Mechanics and its Applications, 512, pp.186 ~ 202.
[17]Kellner, R., M. Nagl and D. Rösch, 2022, “Opening the Black Box-quantile Neural Networks for Loss Given Default Prediction”, Journal of Banking and Finance, 134, 106334.
[18]Landry, M., T. P. Erlinger, D. Patschke and C. Varrichio, 2016, “Probabilistic Gradient Boosting Machines for Gefcom2014 Wind Forecasting”, International Journal of Forecasting, 32(3), pp.1061 ~ 1066.
[19]Leippold, M., Q. Wang and W. Zhou, 2022, “Machine Learning in the Chinese Stock Market”, Journal of Financial Economics, 145(2), pp.64 ~ 82.
[20]Machado, J. A. and J. S. Silva, 2019, “Quantiles via Moments”, Journal of Econometrics, 213(1), pp.145 ~ 173.
[21]Mattera, R. and P. Otto,2024, “Network log-ARCH Models for Forecasting Stock Market Volatility”, International Journal of Forecasting, forthcoming.
[22]McLean, R. D. and M. Zhao, 2014, “The Business Cycle, Investor Sentiment, and Costly External Finance”, The Journal of Finance, 69(3), pp.1377 ~ 1409.
[23]Nagy, G. I., G. Barta, S. Kazi, G. Borbély and G. Simon, 2016, “GEFCom2014: Probabilistic Solar and Wind Power Forecasting Using a Generalized Additive Tree Ensemble Approach”, International Journal of Forecasting, 32(3), pp.1087 ~ 1093.
[24]Pang, C. and Y. Wang, 2020, “Stock Pledge, Risk of Losing Control and Corporate Innovation”, Journal of Corporate Finance, 60, 101534.
[25]Petmezas, D. and D. Santamaria, 2014, “Investor Induced Contagion during the Banking and European Sovereign Debt Crisis of 2007-2012: Wealth Effect or Portfolio Rebalancing?”, Journal of International Money and Finance, 49, pp.401 ~ 424.
[26]Petropoulos, A., V. Siakoulis, E. Stavroulakis and N. E. Vlachogiannakis, 2020, “Predicting Bank Insolvencies Using Machine Learning Techniques”, International Journal of Forecasting, 36(3), pp.1092 ~ 1113.
[27]Procasky, W. J. and A. Yin, 2022, “Forecasting High-yield Equity and CDS Index Returns: Does Observed Cross-market Informational Flow Have Predictive Power?”, Journal of Futures Markets, 42(8), pp.1466 ~ 1490.
[28]Procasky, W. J. and A. Yin, 2023, “The Impact of COVID-19 on the Relative Market Efficiency and Forecasting Ability of Credit Derivative and Equity Markets”, International Review of Financial Analysis, 90, 102926.
[29]Scholz, M., S. Sperlich and J. P. Nielsen, 2016, “Nonparametric Long Term Prediction of Stock Returns with Generated Bond Yields”, Insurance: Mathematics and Economics, 69, pp.82 ~ 96.
[30]Skintzi, V. D., 2019, “Determinants of Stock-Bond Market Comovement in the Eurozone under Model Uncertainty”, International Review of Financial Analysis, 61, pp.20 ~ 28.
[31]Tang, D. Y. and H. Yan, 2010, “Market Conditions, Default Risk and Credit Spreads”, Journal of Banking and Finance, 34(4), pp.743~753.
[32]Tolikas, K. and N. Topaloglou, 2017, “Is Default Risk Priced Equally Fast in the Credit Default Swap and the Stock Markets? An Empirical Investigation”, Journal of International Financial Markets, Institutions and Money, 51, pp.39 ~ 57.
[33]Wang, X., Y. Wu and Z. Zhong, 2020, “The Comovements of Stock, Bond, and CDS Illiquidity before, during, and after the Global Financial Crisis”, Journal of Financial Research, 43(4), pp. 965 ~ 998.
[34]White, H., T. H. Kim and S. Manganelli, 2015, “VAR for VaR: Measuring Tail Dependence Using Multivariate Regression Quantiles”, Journal of Econometrics, 187(1), pp.169 ~ 188.
[35]Wu, Q. and X. Yan, 2019, “Capturing Deep Tail Risk via Sequential Learning of Quantile Dynamics”, Journal of Economic Dynamics and Control, 109, 103771.
[1] 孙三百, 张青萍, 李冉. 中国财富机会不平等的测度与源泉识别——兼论共同富裕的路径选择[J]. 金融研究, 2023, 521(11): 97-114.
[2] 姜富伟, 林奕皓, 马甜. “去刚兑”背景下的企业债券违约风险:机器学习预警和经济机制探究[J]. 金融研究, 2023, 520(10): 85-103.
[3] 华秀萍, 程思睿, 李婉宁, 王勇. 非正式融资中的文化力量 ——企业文化对商业信用的影响[J]. 金融研究, 2023, 520(10): 186-206.
[4] 陆瑶, 施函青. 我国科技企业融资的决定因素研究——基于科创板企业的机器学习分析[J]. 金融研究, 2022, 507(9): 132-151.
[5] 杨子晖, 张平淼, 林师涵. 系统性风险与企业财务危机预警——基于前沿机器学习的新视角[J]. 金融研究, 2022, 506(8): 152-170.
[6] 张伟平, 曹廷求. 中国房地产企业间系统性风险溢出效应分析——基于尾部风险网络模型[J]. 金融研究, 2022, 505(7): 94-114.
[7] 杨子晖, 陈雨恬, 林师涵, 关子桓. 我国金融机构尾部风险影响因素的非线性研究——来自面板平滑转换回归模型的新证据[J]. 金融研究, 2021, 489(3): 38-57.
[8] 王向楠. 寿险公司的业务同质化与风险联动性[J]. 金融研究, 2018, 459(9): 160-176.
[9] 梁巨方, 韩乾. 商品期货可以提供潜在组合多样化收益吗?[J]. 金融研究, 2017, 446(8): 129-144.
[1] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[2] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115 -129 .
[3] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
[4] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[5] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[6] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[7] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[8] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[9] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[10] 吕若思, 刘青, 黄灿, 胡海燕, 卢进勇. 外资在华并购是否改善目标企业经营绩效?——基于企业层面的实证研究[J]. 金融研究, 2017, 449(11): 112 -127 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1