Please wait a minute...
金融研究  2023, Vol. 519 Issue (9): 1-19    
  本期目录 | 过刊浏览 | 高级检索 |
央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角
王辉, 朱家雲, 胡诣聪
中央财经大学金融学院,北京 102206;
中国工商银行博士后科研工作站,北京 100140;
北京银行股份有限公司,北京 100033
Can Expectation Guidance by a Central Bank Reduce Banks' Systemic Financial Risk? A Perspective Based on Deviations in Market Interpretations
WANG Hui, ZHU Jiayun, HU Yicong
School of Finance, Central University of Finance and Economics;
Postdoctoral Research Center, Industrial and Commercial Bank of China;
Bank of Beijing
下载:  PDF (1242KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 预期引导在央行货币政策框架中占有重要地位。本文基于《货币政策执行报告》及市场解读报告,构建货币政策执行报告文本情绪指数、市场解读情绪指数和央行预期情绪市场接收程度指数,结合商业银行的资产负债表数据,从市场解读偏离的视角研究预期引导对银行系统性金融风险的影响机制。结果表明:(1)央行预期引导政策的效果与宏观经济金融环境密切相关,重大经济金融事件或中央政策对央行预期情绪市场接收程度指数影响明显;(2)货币政策执行报告文本情绪指数、市场解读情绪指数和央行预期情绪市场接收程度指数均可有效降低银行系统性金融风险,降低效果依次减弱,且降低效果在经济政策不确定性程度较大时会被削弱。市场解读的差异会降低预期引导的效果;(3)央行预期情绪市场接收程度上升,能减少银行信贷业务和同业业务冲击,进而降低银行系统性金融风险,且前瞻性文本的影响大于回顾性文本。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王辉
朱家雲
胡诣聪
关键词:  货币政策执行报告  预期引导政策  系统性金融风险  市场解读偏离  去一法    
Summary:  Expectation guidance plays an important role in the monetary policy framework.Pessimistic expectations can exacerbate economic fluctuations and financial risks, making macroeconomic regulation and control challenging. Effective tools for guiding market expectations are essential to prevent systemic financial risks, and the entire process of expectation management should consider market feedback mechanisms. Several key questions require further exploration. First, can central bank expectation guidance policies effectively reduce systemic financial risk? Second, can deviations in the market's interpretation of central bank expectation guidance policies affect financial stability? Third, what specific mechanisms underlie the impact of deviations in market interpretations on the systemic financial risk of banks?
To answer these questions, this paper constructs a text sentiment index for the period from 2001 to 2021; specifically, based on China's monetary policy reports and corresponding market reports, this paper constructs a market sentiment index that reflects the central bank's expected sentiment. This index serves to assess changes in the effectiveness of central bank expectation guidance policies over time. In addition, systemic risk indicators are derived from the balance sheet data of 420 commercial banks for the period from 2007 to 2020. Empirical tests are conducted to evaluate whether central bank expectation guidance policies reduce systemic risk, with a focus on channels such as bank credit and interbank activities. Potential endogeneity issues are addressed using dynamic panel models, and robustness tests are conducted by varying the measurement indices, text types, selected texts, and factors such as bank ownership, listing status, and macroeconomic fluctuations.
The empirical findings are as follows. First, central bank expectation guidance policies are closely related to the macroeconomic environment. Second, the emotional interpretation of monetary policy reports, the market sentiment index, and the index reflecting the market reception of the central bank's expected sentiment can effectively reduce systemic financial risk, albeit with diminishing returns, particularly during periods of economic policy uncertainty. Third, the central bank's expected sentiment-market reception reduces systemic risk in banks by mitigating the impact on bank credit and interbank activities. Finally, prospective text-based expected sentiment in the monetary policy report has a more pronounced influence on systemic financial risk than the retrospective text.
Based on the above conclusions, the following policy recommendations can be made. First, the central bank should continue to implement expectation guidance policies, as outlined in the monetary policy implementation reports. These policies should play a role in adjusting and fine-tuning the risk asset allocation and other behaviors of financial institutions. Furthermore, an expectation regulation system that is tailored to the characteristics of economic development should be established to reduce systemic risk levels in banks. Second, in the process of expectation management, the central bank must consider the impact of information receivers on policy implementation. This entails fully understanding the formation mechanism and the factors influencing public expectations and market feedback on expectation guidance policies. Timely responses to negative market feedback should be provided to mitigate the negative impact of information distortion. Third, the expectation guidance policy should comprehensively consider its impact on small and medium-sized institutions and unlisted institutions. Supplementary interpretations of relevant policy documents or policy tools may be required to accompany the release of expectation guidance reports, such as monetary policy implementation reports. This will help the market to accurately interpret the central bank's policy intentions and reduce communication costs. Fourth, during periods of macroeconomic fluctuations and increasing extreme risk incidents, the central bank should enhance its management effectiveness. It should utilize its role as a stabilizing force in times of crisis to maintain market confidence and financial stability. This can be achieved by using more positive language to convey a positive mood, thereby boosting market confidence and achieving the desired effect of policy stability. Incorporating these recommendations into the central bank's practices will contribute to improving the anticipation-based regulatory mechanism, strengthening the anticipation-based regulatory system, and safeguarding against systemic risks.
Keywords:  Monetary Policy Report    Expectation Guidance Policy    Systemic Financial Risk    Market Interpretation Deviation    Leave-one Method
JEL分类号:  E58   E60   G21  
基金资助: * 本文感谢教育部哲学社会科学研究重大课题攻关项目(22JZD011)、国家自然科学基金面上项目(71771224,72273165)、国家社会科学基金重大项目(20&ZD101)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  王 辉,理学博士,教授,中央财经大学金融学院,E-mail: xiaohuipk@163.com.   
作者简介:  朱家雲,经济学博士,中国工商银行博士后科研工作站,E-mail: zhu_jia_yun@126.com.
胡诣聪,经济学硕士,北京银行股份有限公司,E-mail: 178569820@qq.com.
引用本文:    
王辉, 朱家雲, 胡诣聪. 央行预期引导可以降低银行系统性金融风险吗?——基于市场解读偏离的视角[J]. 金融研究, 2023, 519(9): 1-19.
WANG Hui, ZHU Jiayun, HU Yicong. Can Expectation Guidance by a Central Bank Reduce Banks' Systemic Financial Risk? A Perspective Based on Deviations in Market Interpretations. Journal of Financial Research, 2023, 519(9): 1-19.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V519/I9/1
[1]董礼和陈金龙,2021,《央行言辞沟通与企业短贷长投》,《华侨大学学报(哲学社会科学版)》第5期,第70~80页。
[2]方意和荆中博,2022,《外部冲击下系统性金融风险的生成机制》,《管理世界》第5期,第19~35+102+36~46页。
[3]范小云、荣宇浩和段月姣,2021,《系统性风险传染机制中的级联故障研究——兼论“多而不能倒” 与 “大而不能倒”》,《经济学动态》第9期,第48~60页。
[4]郭豫媚和周璇,2018,《央行沟通, 适应性学习和货币政策有效性》,《经济研究》第4期,第77~91页。
[5]胡国晖和蒋璐阳,2022,《货币政策预期管理对抑制商业银行资金同业空转的作用——基于德格鲁特模型的预期构建分析》,《金融理论与实践》第1期,第9~19页。
[6]姜富伟、胡逸驰和黄楠,2021,《央行货币政策报告文本信息,宏观经济与股票市场》,《金融研究》第6期,第95~113页。
[7]林建浩和赵文庆,2015,《中国央行沟通指数的测度与谱分析》,《统计研究》第1期,第52~58页。
[8]刘澜飚和李博韬,2021,《市场竞争、同业业务与银行风险承担》,《经济学动态》第4期,第38~53页。
[9]毛泽盛和王元,2015,《中国信贷波动对金融系统性风险影响的实证研究》,《国际金融研究》第12期,第25~33页。
[10]汪莉和王先爽,2015,《央行预期管理,通胀波动与银行风险承担》,《经济研究》第10期,第34~48页。
[11]王辉和朱家雲,2022,《金融监管视角下银行稳健性与流动性资产配置》,《经济研究》第12期,第104~123页。
[12]王辉、朱家雲和陈旭,2021,《银行间市场网络稳定性与系统性金融风险最优应对策略:政府控股视角》,《经济研究》第11期,第100~118页。
[13]王宇伟、周耿和吴曈等,2019,《央行的言辞沟通, 实际行动与企业投资行为》,《中国工业经济》第5期,第120~137页。
[14]杨子晖和李东承,2018,《我国银行系统性金融风险研究——基于 “去一法” 的应用分析》,《经济研究》第8期,第36~51页。
[15]张一帆、林建浩和杨扬等,2022,《央行沟通、信息冲击与国债市场波动》,《系统工程理论与实践》第3期,第575~590页。
[16]Blinder A. S., M. Ehrmann, M. Fratzscher,J.de Haan and D.Jansen, 2008, “Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence,” Journal of Economic Literature, 46(4), pp.910~945.
[17]Bardoscia M., P. Barucca, A. B. Codd and J.Hill, 2019, “Forward-looking Solvency Contagion,” Journal of Economic Dynamics and Control, 108, 103755.
[18]Bauer M and E T. Swanson, 2020, “The Fed's Response to Economic News Explains the ‘Fed Information Effect’”,NBER Working Paper No.27013.
[19]Duarte F. and T. M. Eisenbach, 2021, “Fire-sale Spillovers and Systemic Risk,” The Journal of Finance, 76(3), pp. 1251~1294.
[20]Fratzscher M., 2008, “Communication and Exchange Rate Policy,” Journal of Macroeconomics, 30(4), pp. 1651~1672.
[21]Nakamura E. and J. Steinsson,2018, “High-frequency Identification of Monetary Non-neutrality: the Information Effect,” The Quarterly Journal of Economics, 133(3), pp.1283-1330.
[22]Jansen D. J. and J.de Haan, 2007, “The Importance of Being Vigilant: Has ECB Communication Influenced Euro Area Inflation Expectations?”, Social Science Electronic Publishing, 7(10), pp.121~148.
[23]Oosterloo S. and J. de Haan, 2007, “Jong-A-Pin R. Financial Stability Reviews: A First Empirical Analysis,” Journal of Financial Stability, 2(4), pp. 337~355.
[24]Romer C D. and D H. Romer,2000, “Federal Reserve Information and the Behavior of Interest Rates”, American Economic Review, 90(3), pp. 429~457.
[25]Woodford M., 2005, “Central Bank Communication and Policy Effectiveness” NBER Working Paper, No. 11898.
[1] 方意, 刘江龙. 银行关联性与系统性金融风险:传染还是分担?[J]. 金融研究, 2023, 516(6): 57-74.
[2] 杨子晖, 陈雨恬, 林师涵. 系统性金融风险文献综述:现状、发展与展望[J]. 金融研究, 2022, 499(1): 185-217.
[3] 李敏波, 梁爽. 监测系统性金融风险——中国金融市场压力指数构建和状态识别[J]. 金融研究, 2021, 492(6): 21-38.
[4] 白鹤祥, 刘社芳, 罗小伟, 刘蕾蕾, 郝威亚. 基于房地产市场的我国系统性金融风险测度与预警研究[J]. 金融研究, 2020, 482(8): 54-73.
[5] 陈湘鹏, 周皓, 金涛, 王正位. 微观层面系统性金融风险指标的比较与适用性分析——基于中国金融系统的研究[J]. 金融研究, 2019, 467(5): 17-36.
[6] 刘哲希, 随晓芹, 陈彦斌. 储蓄率与杠杆率:一个U型关系[J]. 金融研究, 2019, 473(11): 19-37.
[7] 杨子晖, 陈雨恬, 谢锐楷. 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究[J]. 金融研究, 2018, 460(10): 19-37.
[8] 陶玲, 朱迎. 系统性金融风险的监测和度量——基于中国金融体系的研究[J]. 金融研究, 2016, 432(6): 18-36.
[1] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[2] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[3] 纪志宏, 曹媛媛. 信用风险溢价还是市场流动性溢价:基于中国信用债定价的实证研究[J]. 金融研究, 2017, 440(2): 1 -10 .
[4] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[5] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[6] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[7] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[8] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[9] 杜兴强, 谭雪. 国际化董事会、分析师关注与现金股利分配[J]. 金融研究, 2017, 446(8): 192 -206 .
[10] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1