Please wait a minute...
金融研究  2024, Vol. 524 Issue (2): 187-206    
  本期目录 | 过刊浏览 | 高级检索 |
基金共同持股下的投资行为与股价崩盘风险
曾伟, 徐忠, 李尚宸, 沈吉, 王翀
中国投资有限责任公司, 北京 100010;
中国银行间市场交易商协会, 北京 100045;
香港大学金融创新及发展研究中心, 香港 999077;
北京大学光华管理学院、北京大学数量经济与数理金融教育部重点实验室, 北京 100871;
北京大学光华管理学院, 北京 100871
Joint Ownership and Investment Behaviors of Mutual Funds and Stock Crash Risk
ZENG Wei, XU Zhong, LI Shangchen, SHEN Ji, WANG Chong
China Investment Corporation National;
Association of Financial Market Institutional Investors;
Center for Financial Innovation and Development;
The University of Hong Kong Guanghua School of Management, and Key Laboratory of Mathematical Economics and Quantitative Finance (Peking University);
Peking UniversityGuanghua School of Management, Peking University
下载:  PDF (654KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 发挥公募基金等机构投资者维护市场稳定中的作用,对我国资本市场发展意义重大,然而,我国公募基金投资行为散户化一直饱受诟病。本文建立理论模型提出,在基金共同持股情形下,面对负面信息时的竞争性抛售行为,是导致股价崩盘的重要机制。结合理论预测,并使用2010—2022年基金季度持仓数据,本文验证了该影响机制,发现基金重仓持股比例与股价崩盘风险显著正相关。持股基金的集中程度越高、长期持股倾向越强、业绩短期排名压力越轻,越有助于减轻基金持股对股价崩盘风险的影响。本文的结论,有助于深入理解基金共同持股下的策略性博弈与竞争行为如何导致股价暴涨暴跌,丰富了从投资者交易行为解释股价崩盘风险的相关文献。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾伟
徐忠
李尚宸
沈吉
王翀
关键词:  基金共同持股  投资行为  股价崩盘风险  负面信息  竞争性抛售    
Summary:  China's stock market is facing a severe problem of excessive stock price volatility. The mutual fund industry in China has experienced remarkable growth over the past two decades. In April 2022, the China Securities Regulatory Commission (CSRC) issued opinions promoting the high-quality development of the mutual fund industry and emphasized the importance of mutual funds in serving the capital market. However, anecdotal reports of panic selling by mutual funds raise concerns about the potential impact of public mutual funds on the stock price crash risk.
Research primarily focuses on the role of information asymmetry in explaining stock price crash risks, suggesting that institutional investors influence this risk through mechanisms such as corporate governance, collusion, or information mining, which affect the transparency of the information environment and the release of negative news (Chen et al., 2001; Jin and Myers, 2006; Callen and Fang, 2013). However, another direct mechanism, namely competitive trading behavior in response to negative news, may be at play.
To illustrate this new perspective, the paper first constructs a continuous-time trading model with multiple institutional investors. The real-time asset price is set to consist of three important components. The first component represents the trading needs of uninformed noise traders and is modeled as white noise with no drift term. The second component captures the permanent price impact, which is related to inventory in the hands of institutional investors. The third component captures the transitory price pressure from instantaneous trading. Each institutional investor with a mean-variance utility function determines their individual trading speed to maximize the expected payoff in a given period of time. The optimal dynamic trading trajectory for each participant is derived, and the asset price dynamics are characterized as a result of aggregation. Given the total position adjustment for the group of institutional investors, the asset price skewness is then easily obtained as an equilibrium outcome. Using the model, we then study a case wherein the optimal liquidation position for each participant can be endogenized and explore whether the stock holdings distributed among institutional investors may affect the stock price crash risk.
We empirically test hypotheses derived from the theoretical model using quarterly data on reported holdings of stock mutual funds in China from 2010 to 2022. The results show a significant positive correlation between the proportion of fund ownership and the stock price crash risk. When negative signals such as downgrades of stock ratings or earnings forecasts by sell-side analysts occur, funds tend to reduce their holdings. Moreover, a higher proportion of joint ownership among funds leads to a stronger negative market reaction and greater stock price crash risk. To further illustrate the competitive selling mechanism among mutual funds, we analyze the impact of the number of funds holding stock and the concentration of their ownership on stock divestments. Our findings reveal that a higher number of funds holding a stock indicates a stronger willingness to sell in response to negative news, while a higher concentration among holding funds is associated with a lower propensity for competitive selling.
Consistent with the predictions of the theoretical model, we examine how fund characteristics and stock features influence the relationship between fund holdings and the stock price crash risk. The results indicate that the impact of fund holdings on stock price crash risk is stronger when a larger number of funds hold the stock and their shares are more evenly distributed. Additionally, a long investment horizon and reduced short-term performance pressure among holding funds help mitigate the impact of fund holdings on the stock price crash risk. Furthermore, we find that stock return volatility dampens the influence of fund holdings on the stock price collapse risk.
This paper contributes to the literature in several ways. First, it provides a new perspective on how the competitive selling behavior of mutual funds in response to negative information increases the stock price crash risk, thereby contributing to the academic debate on the role of institutional investors. Second, it develops a competitive selling model for investors to assess the impacts of fund holding concentration and stock volatility on the stock price crash risk. Third, it finds that the investment horizon and short-term performance pressure are important factors influencing the relationship between fund holdings and the stock price crash risk. These findings not only enrich the empirical discussion on whether mutual funds exacerbate or mitigate the stock price crash risk but also provide valuable insights into the regulation of the mutual fund industry.
Keywords:  Mutual Funds' Joint Ownership    Investment Behavior    Crash Risk    Negative News    Competitive Selling
JEL分类号:  G11   G14   G23  
基金资助: * 感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  李尚宸,金融学博士,博士后,香港大学金融创新及发展研究中心,E-mail:lisc07@hku.hk.   
作者简介:  曾 伟,经济学博士,中国投资有限责任公司,E-mail:zengw.14@pbcsf.tsinghua.edu.cn.徐 忠,研究员,中国银行间市场交易商协会。沈 吉,金融学博士,副教授,北京大学光华管理学院、北京大学数量经济与数理金融教育部重点实验室,E-mail:jishen@gsm.pku.edu.cn.王 翀,资讯系统学博士,教授,北京大学光华管理学院,E-mail:alexwang@gsm.pku.edu.cn.
引用本文:    
曾伟, 徐忠, 李尚宸, 沈吉, 王翀. 基金共同持股下的投资行为与股价崩盘风险[J]. 金融研究, 2024, 524(2): 187-206.
ZENG Wei, XU Zhong, LI Shangchen, SHEN Ji, WANG Chong. Joint Ownership and Investment Behaviors of Mutual Funds and Stock Crash Risk. Journal of Financial Research, 2024, 524(2): 187-206.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V524/I2/187
[1] 曹丰、鲁冰、李争光和徐凯,2015,《机构投资者降低了股价崩盘风险吗?》,《会计研究》第11期,第55~61+97页。
[2] 陈新春、刘阳和罗荣华,2017,《机构投资者信息共享会引来黑天鹅吗?——基金信息网络与极端市场风险》,《金融研究》第7期,第140~155页。
[3] 董纪昌、庞嘉琦、李秀婷和董志,2020,《机构投资者持股与股价崩盘风险的关系——基于市场变量的检验》,《管理科学学报》第3期,第73~88页。
[4] 高昊宇、杨晓光和叶彦艺,2017,《机构投资者对暴涨暴跌的抑制作用:基于中国市场的实证》,《金融研究》第2期,第163~178页。
[5] 孔东民、刘莎莎和谭伟强,2019,《分析师评级与投资者交易行为》,《管理世界》第1期,第167~178+228页。
[6] 孔东民和王江元,2016,《机构投资者信息竞争与股价崩盘风险》,《南开管理评论》第5期,第127~138页。
[7] 彭俞超、倪骁然和沈吉,2018,《企业“脱实向虚”与金融市场稳定——基于股价崩盘风险的视角》,《经济研究》第10期,第50~66页。
[8] 祁斌、黄明和陈卓思,2006,《机构投资者与股市波动性》,《金融研究》第9期,第54~64页。
[9] 史永东和王谨乐,2014,《中国机构投资者真的稳定市场了吗?》,《经济研究》第12期,第100~112页。
[10] 吴晓晖、郭晓冬和乔政,2019,《机构投资者抱团与股价崩盘风险》,《中国工业经济》第2期,第117~135页。
[11] 许年行、于上尧和伊志宏,2013,《机构投资者羊群行为与股价崩盘风险》,《管理世界》第7期,第31~43页。
[12] 尹海员和朱旭,2022,《机构投资者信息挖掘、羊群行为与股价崩盘风险》,《管理科学学报》第2期,第69~88页。
[13] 朱菲菲、吴偎立和杨云红,2023,《ETF、股票流动性与股价崩盘风险》,《金融研究》第6期,第169~186页。
[14] Alexander, G.J., G. Cici and S. Gibson, 2007, “Does motivation matter when assessing trade performance? An analysis of mutual funds”, The Review of Financial Studies, 20(1), pp.125~150.
[15] Almgren, R. and N. Chriss, 2001, “Optimal execution of portfolio transactions”, Journal of Risk, 3(2), pp.5~40.
[16] Bertsimas, D. and A.W. Lo, 1998, “Optimal control of execution costs”, Journal of Financial Markets, 1(1), pp.1~50.
[17] Boguth, O. and M. Simutin, 2018, “Leverage Constraints and Asset Prices: Insights from Mutual Fund Risk Taking”, Journal of Financial Economics, 127(2), pp. 325~341.
[18] Brown, G.W., P. Howard and C.T. Lundblad, 2022, “Crowded trades and tail risk”, The Review of Financial Studies, 35(7), pp.3231~3271.
[19] Callen, J. L. and X. Fang, 2013, “Institutional Investor Stability and Crash Risk: Monitoring Versus Short-termism?”, Journal of Banking&Finance, 37(8), pp. 3047~3063.
[20] Carlin, B.I., M. S. Lobo and S. Viswanathan, 2007, “Episodic Liquidity Crises: Cooperative and Predatory Trading”, Journal of Finance, 62, pp. 2235~2274.
[21] Chen, J., H. Hong and J. C. Stein, 2001, “Forecasting Crashes: Trading Volume, Past Returns, and Conditional Skewness in Stock Prices”, Journal of Financial Economics, 61(3), pp. 345~381.
[22] Coval, J. and E. Stafford, 2007, “Asset fire sales (and purchases) in equity markets”, Journal of Financial Economics, 86(2), pp.479~512.
[23] DeMarzo, P.M. and B. Uroševic, 2006, “Ownership dynamics and asset pricing with a large shareholder”, Journal of Political Economy, 114(4), pp.774~815.
[24] Gabaix, X., P. Gopikrishnan, V. Plerou and H. E. Stanley, 2006, “Institutional Investors and Stock Market Volatility”, Quarterly Journal of Economics, 121(2), pp. 461~504.
[25] Jin, L. and S. C. Myers, 2006, “R2 Around the World: New Theory and New Tests”, Journal of Financial Economics, 79(2), pp. 257~292.
[26] Liu, J., R. F. Stambaugh and Y. Yuan, 2019, “Size and Value in China”, Journal of Financial Economics, 134(1), pp. 48~69.
[27] Oehmke, M., 2014, “Liquidating Illiquid Collateral”, Journal of Economic Theory, 149, pp. 183~210.
[28] Stickel, S. E., 1989, “The Timing of and Incentives for Annual Earnings Forecasts Near Interim Earnings Announcements”, Journal of Accounting and Economics, 11(2-3), pp. 275~292.
[29] Vayanos, D., 1998, “Transaction Costs and Asset Prices: A Dynamic Equilibrium Model”, Review of Financial Studies, 11, pp.1~58.
[1] 朱菲菲, 吴偎立, 杨云红. ETF、股票流动性与股价崩盘风险[J]. 金融研究, 2023, 516(6): 169-186.
[2] 许晓芳, 陆正飞. 股权质押融资存在“柠檬现象”吗?——来自股价崩盘风险的证据[J]. 金融研究, 2023, 522(12): 56-73.
[3] 刘瑞琳, 李丹. 注册制改革会产生溢出效应吗?——基于企业投资行为的视角[J]. 金融研究, 2022, 508(10): 170-188.
[4] 谢里, 郑新业. 理性预期与能源投资——基于中国碳减排承诺的自然实验[J]. 金融研究, 2020, 479(5): 151-169.
[5] 周光友, 罗素梅. 互联网金融资产的多目标投资组合研究[J]. 金融研究, 2019, 472(10): 135-151.
[6] 叶康涛, 刘芳, 李帆. 股指成份股调整与股价崩盘风险:基于一项准自然实验的证据[J]. 金融研究, 2018, 453(3): 172-189.
[7] 宋献中, 胡珺, 李四海. 社会责任信息披露与股价崩盘风险——基于信息效应与声誉保险效应的路径分析[J]. 金融研究, 2017, 442(4): 161-175.
[8] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158-174.
[9] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175-190.
[10] 江轩宇, 许年行. 企业过度投资与股价崩盘风险[J]. 金融研究, 2015, 422(8): 141-158.
[11] 黎文靖, 路晓燕. 机构投资者关注企业的环境绩效吗?——来自我国重污染行业上市公司的经验证据[J]. 金融研究, 2015, 426(12): 97-112.
[1] 孙淑伟, 梁上坤, 阮刚铭, 付宇翔. 高管减持、信息压制与股价崩盘风险[J]. 金融研究, 2017, 449(11): 175 -190 .
[2] 潘越, 肖金利, 戴亦一. 文化多样性与企业创新:基于方言视角的研究[J]. 金融研究, 2017, 448(10): 146 -161 .
[3] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[4] 潘彬, 王去非, 金雯雯. 时变视角下非正规借贷利率的货币政策反应研究[J]. 金融研究, 2017, 448(10): 52 -67 .
[5] 刘啟仁, 黄建忠. 人民币汇率变动与出口企业研发[J]. 金融研究, 2017, 446(8): 19 -34 .
[6] 康书隆, 余海跃, 刘越飞. 住房公积金、购房信贷与家庭消费——基于中国家庭追踪调查数据的实证研究[J]. 金融研究, 2017, 446(8): 67 -82 .
[7] 金宇超, 靳庆鲁, 李晓雪. 资本市场注意力总量是稀缺资源吗?[J]. 金融研究, 2017, 448(10): 162 -177 .
[8] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[9] 綦建红, 刘慧. 对我国“出口脱媒”现象的另一种解释——基于贸易中介应对汇率水平变动的视角[J]. 金融研究, 2017, 447(9): 35 -50 .
[10] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1