Please wait a minute...
金融研究  2024, Vol. 524 Issue (2): 169-186    
  本期目录 | 过刊浏览 | 高级检索 |
监管智能化与首发定价效率——来自科创板智能辅助审核平台的证据
刘春, 孙亮
中山大学国际金融学院,广东珠海 519082
Regulation Intelligence and IPO Pricing Efficiency—Evidence from IARP
LIU Chun, SUN Liang
International School of Business and Finance, Sun Yat-sen University
下载:  PDF (617KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 提升首发定价效率,是资本市场改革的重要课题。本文以科创板智能辅助审核平台实施为准自然实验,以2018年9月至2022年8月科创板和创业板公司的首发折价为研究对象,采用双重差分模型考察了资本市场监管智能化建设对首发定价效率的作用和机理。本文发现,智能辅助审核平台实施之后,试点公司的首发定价效率显著提升。机制分析表明,智能辅助审核平台主要通过增加公司信息可靠性和降低投资者信息不对称两个渠道发挥作用。异质性分析发现,对信息环境更差和科技属性更强的公司,智能辅助审核平台提升首发定价效率的作用更明显。进一步分析发现,智能辅助审核平台还显著降低了公司上市首日换手率和上市后价格修正波动率。本文既丰富了首发定价效率和资本市场监管智能化建设的相关研究,也为健全中国资本市场定价功能提供了理论参考和完善方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春
孙亮
关键词:  首发定价效率  资本市场定价功能  智能辅助审核平台  监管智能化    
Summary:  China's capital market has long struggled with the problem of an inadequate initial public offering (IPO) pricing function. Despite improvements in the registration system, there are still many instances of extreme IPO overpricing or underpricing in the science and technology innovation market (STAR) and growth enterprise market (GEM). Furthermore, the underpricing of IPOs in China's capital market is typically significantly higher than that in developed countries such as the United States and United Kingdom. Excessive underpricing significantly raises financing costs, which in turn distorts firms' investment decisions and seriously undermines the investment and financing functions of the capital market. Therefore, investigating practical approaches to improving the efficiency of IPO pricing that are relevant to China's institutional background is a crucial task that must be undertaken in the current reform of China's capital market, especially in light of the complete implementation of the registration system.
In theory, regulation intelligence (hereinafter reg-intel), which heavily leverages artificial intelligence (AI) technologies such as machine learning (ML) and natural language processing (NLP), could be a useful tool for increasing the efficiency of IPO pricing. By reducing the cost of regulators' information integration, reg-intel can assist regulators in identifying and highlighting suspicious information and thus can bolster the credibility of IPO firms' information. Reg-intel also can assist regulators in finding and unlocking idiosyncratic information about the IPO firms, thus reducing information asymmetry for investors and improving the efficiency of IPO pricing. In practice, in September 2020 the SSE investigated the application of the intelligent assisted review platform (IARP), which uses AI technologies such as ML and NLP to facilitate IPO reviews. Using the IARP as a quasi-natural experiment and adopting the difference-in-differences method, this paper systematically analyses and tests the effect of reg-intel on the efficiency of IPO pricing and the underlying mechanism for the first time.
This paper reports the following findings. (1) IPO pricing efficiency improves significantly when the IARP is introduced. (2) The results hold after a series of robustness tests. (3) There is no evidence of an ex-ante trend of changes in pricing efficiency, supporting the validity of the parallel trend hypothesis and a causal interpretation of the results. (4) The IARP exerts its effects through two channels: it strengthens the credibility of the IPO firm's information and reduces information asymmetry for investors. (5) The IARP is more effective for IPOs with poorer information environments and stronger technological attributes. (6) The IARP significantly reduces the first-day stock turnover rate and post-listing price correction volatility of IPOs.
This paper makes three contributions to the field. First, it enriches and extends research on the efficiency of IPO pricing in the context of the registration system. This paper provides the first evidence that reg-intel can effectively improve the efficiency of IPO pricing in this context, thus contributing new ideas and evidence to the relevant literature and providing theoretical references and directions for the practice of reg-intel in China's capital market. Second, this paper enriches and extends research on reg-tech in China's capital market. This paper is the first to discuss the advanced stages of AI-based reg-tech and the resulting impact on the cost of information integration for regulators. It thus adds both a new perspective on the role of reg-tech and new evidence to support the evaluation of reg-tech's real efficacy in China's capital markets. Third, this paper enriches and extends research related to the impact of AI technology on the financial industry. Unlike previous literature, which mainly examines financial intermediaries, this paper focuses on the use of AI by capital market regulators, thus adding new evidence and suggesting new directions.
The results of this paper suggest that reg-intel can significantly improve the efficiency of IPO pricing. Therefore, to improve IPO pricing efficiency, authorities should further expand and deepen the construction of reg-intel in China's capital market and formulate a categorized, stratified, focused, and coordinated review strategy. Simultaneously, the authorities could also consider more imaginative answers to the problem of sensible capital market pricing in China. For example, an interactive platform where regulators and investors could exchange information might directly lower retail investors' costs associated with processing information.
Keywords:  IPO pricing efficiency    pricing function of capital market    the intelligent assisted review platform    regulation intelligence
JEL分类号:  G14   G18  
基金资助: * 本文感谢国家自然科学基金面上项目和重点项目(71972186、71772182、72132010)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  孙 亮,管理学博士,副教授,中山大学国际金融学院,Email:sunl6@mail.sysu.edu.cn.   
作者简介:  刘 春,管理学博士,副教授,中山大学国际金融学院,Email:liuchun5@mail.sysu.edu.cn.
引用本文:    
刘春, 孙亮. 监管智能化与首发定价效率——来自科创板智能辅助审核平台的证据[J]. 金融研究, 2024, 524(2): 169-186.
LIU Chun, SUN Liang. Regulation Intelligence and IPO Pricing Efficiency—Evidence from IARP. Journal of Financial Research, 2024, 524(2): 169-186.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2024/V524/I2/169
[1] 顾明、曾力、陈海强和倪博,2022,《交易限制与股票市场定价效率——基于创业板涨跌幅限制放宽的准自然实验研究》,《金融研究》第11期,第189~206页。
[2] 郭白滢和周任远,2019,《信息互动、投资决策与股票价格——基于机构投资者信息网络的分析》,《金融研究》第10期,第188~206页。
[3] 赖黎、蓝春丹和秦明春,2022,《市场化改革提升了定价效率吗?——来自注册制的证据》,《管理世界》第4期,第172~184页。
[4] 孙亮和刘春,2022,《监管科技化如何影响企业并购绩效?——基于证监会建立券商工作底稿科技管理系统的准自然实验》,《管理世界》第9期,第176~196页。
[5] 魏志华、曾爱民、吴育辉和李常青,2019,《IPO首日限价政策能否抑制投资者“炒新”?》,《管理世界》第1期,第192~210页。
[6] 薛爽和王禹,2022,《科创板IPO审核问询回复函与首发抑价》,《管理世界》第4期,第185~203页。
[7] 张光利、薛慧丽和高皓,2023,《文本可读性与IPO审核问询的信息效果检验》,《金融研究》第7期,第173~192页。
[8] 钟覃琳和陆正飞,2018,《资本市场开放能提高股价信息含量吗?——基于“沪港通”效应的实证检验》,《管理世界》第1期,第169~179页。
[9] Allen, F., J. Q. Qian, C. Shan and J. L. Zhu, 2024, “Dissecting the Long-term Performance of the Chinese Stock Market”, The Journal of Finance, 79(2), pp. 993~1054.
[10] Blankespoor, E., E. DeHaan and I. Marinovic, 2020, “Disclosure Processing Costs, Investors' Information Choice, and Equity Market Outcomes: A Review”, Journal of Accounting and Economics, 70(2-3), 101344.
[11] Chen, Y., A. Goyal, M. Veeraraghavan and L. Zolotoy, 2020, “Media Coverage and IPO Pricing Around the World”, Journal of Financial and Quantitative Analysis, 55(5), pp. 1515~1553.
[12] Chen, Y. , A. Goyal and L. Zolotoy, 2022, “Global Board Reforms and the Pricing of IPOs”, Journal of Financial and Quantitative Analysis, 57(6), pp. 2412~2443.
[13] Coleman, B., K. Merkley and J. Pacelli, 2022, “Human Versus Machine: A Comparison of Robo-analyst and Traditional Research Analyst Investment Recommendations”, The Accounting Review, 97(5), pp. 221~244.
[14] Fedyk, A., J. Hodson, N. Khimich and T. Fedyk, 2022, “Is Artificial Intelligence Improving the Audit Process?”, Review of Accounting Studies, 27(3), pp. 938~985.
[15] Fuster, A., P. Goldsmith Pinkham, T. Ramadorai and A. Walther, 2022, “Predictably Unequal? The Effects of Machine Learning on Credit Markets”, The Journal of Finance, 77(1), pp. 5~47.
[16] Gao, S., P. Brockman, Q. Meng and X. Yan, 2020, “Differences of Opinion, Institutional Bids, and IPO Underpricing”, Journal of Corporate Finance, 60101540.
[17] Jiang, Y., Y. Qian and T. Yao, 2016, “R&D Spillover and Predictable Returns”, Review of Finance, 20(5), pp. 1769~1797.
[18] Kim, J., Y. Kim and J. Zhou, 2017, “Languages and Earnings Management”, Journal of Accounting and Economics, 63(2-3), pp. 288~306.
[19] Kothari, S. P., A. J. Leone and C. E. Wasley, 2005, “Performance Matched Discretionary Accrual Measures”, Journal of Accounting and Economics, 39(1), pp. 163~197.
[20] Lee, C. M. and Q. Zhong, 2022, “Shall We Talk? The Role of Interactive Investor Platforms in Corporate Communication”, Journal of Accounting and Economics, 74(2-3), 101524.
[21] Leuz, C., 2022, “Towards a Design-based Approach to Accounting Research”, Journal of Accounting and Economics, 101550.
[22] Loughran, T. and B. McDonald, 2013, “IPO First-day Returns, Offer Price Revisions, Volatility, and Form S-1 Language”, Journal of Financial Economics, 109(2), pp. 307~326.
[23] Lowry, M., R. Michaely and E. Volkova, 2020, “Information Revealed through the Regulatory Process: Interactions between the SEC and Companies ahead of Their IPO”, The Review of Financial Studies, 33(12), pp. 5510~5554.
[24] Shroff, N., R. S. Verdi and B. P. Yost, 2017, “When Does the Peer Information Environment Matter?”, Journal of Accounting and Economics, 64(2-3), pp. 183~214.
[25] Teoh, S. H., I. Welch and T. J. Wong, 1998, “Earnings Management and the Long-run Market Performance of Initial Public Offerings”, The Journal of finance, 53(6), pp. 1935~1974.
[26] Welch, I., 1989, “Seasoned Offerings, Imitation Costs, and the Underpricing of Initial Public Offerings”, The Journal of Finance, 44(2), pp. 421~449.
[1] 曾伟, 徐忠, 李尚宸, 沈吉, 王翀. 基金共同持股下的投资行为与股价崩盘风险[J]. 金融研究, 2024, 524(2): 187-206.
[2] 马腾, 张晓燕, 李志勇. 期权隐含信息和价格发现——基于中国场内期权市场的研究[J]. 金融研究, 2024, 523(1): 169-186.
[3] 高明, 毕燕璐, 胡聪慧. 环境立法与投资者利益保护——基于股票市场异常波动的视角[J]. 金融研究, 2024, 523(1): 113-130.
[4] 张劲帆, 郭云瀚. 中国银行间回购市场微观结构研究[J]. 金融研究, 2023, 518(8): 94-111.
[5] 陈彬彬, 刘善存, 张强, 曾庆铎. 基于理性预期均衡的金融期货定价研究:信息驱动还是套利驱动?[J]. 金融研究, 2023, 518(8): 170-188.
[6] 张光利, 薛慧丽, 高皓. 文本可读性与IPO审核问询的信息效果检验[J]. 金融研究, 2023, 517(7): 173-192.
[7] 余泳泽, 庄海涛, 伏雨. 社会失信与全要素生产率——基于交易成本视角的研究[J]. 金融研究, 2023, 515(5): 58-76.
[8] 林兟, 何为, 余剑峰, 熊熊. 公募基金改善了市场定价效率吗?——持股基金质量与股票收益[J]. 金融研究, 2023, 514(4): 149-167.
[9] 应千伟, 韩梦锐, 黄丽. 并购重组问询函延期答复研究[J]. 金融研究, 2023, 514(4): 168-186.
[10] 钱先航, 刘芸, 王营. 高管媒体从业经历与股价大跌风险——基于上市公司的实证研究[J]. 金融研究, 2023, 513(3): 150-168.
[11] 王勇, 窦斌, 宋培睿, 何昕晟. 管理层语调偏离会影响投资者决策吗?——基于我国上市公司文本与财务数据的经验研究[J]. 金融研究, 2023, 513(3): 169-187.
[12] 曾诗鸿, 贾婧敏, 姚树洁, 韦开蕾, 钟震. 基于Copula模型的中国碳市场叠加风险度量[J]. 金融研究, 2023, 513(3): 93-111.
[13] 李善民, 杨楠, 黄志宏. 并购重组前的知情交易行为研究[J]. 金融研究, 2023, 511(1): 169-187.
[14] 邢秉昆. 碳减排约束下中国工业企业信用评级[J]. 金融研究, 2022, 509(11): 77-97.
[15] 李孟哲, 麻志明, 吴联生. 上市公司数量与非上市公司创新[J]. 金融研究, 2022, 509(11): 171-188.
[1] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[2] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[3] 卢洪友, 余锦亮, 张楠. 纵向行政管理结构与地方政府财政支出规模[J]. 金融研究, 2017, 448(10): 35 -51 .
[4] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
[5] 邓路, 刘瑞琪, 江萍. 公司超额银行借款会导致过度投资吗?[J]. 金融研究, 2017, 448(10): 115 -129 .
[6] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[7] 张晓宇, 徐龙炳. 限售股解禁、资本运作与股价崩盘风险[J]. 金融研究, 2017, 449(11): 158 -174 .
[8] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
[9] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[10] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1