Please wait a minute...
金融研究  2023, Vol. 521 Issue (10): 28-46    
  本期目录 | 过刊浏览 | 高级检索 |
数字金融发展的劳动力需求效应 ——来自2000万在线招聘岗位的经验证据
蔡卫星, 韦庆芳, 林航宇
广东财经大学金融学院,广东广州 510320;
华侨大学经济与金融学院,福建泉州 362021;
对外经济贸易大学中国金融学院,北京 100029
The Effects of Digital Finance on Labor Demand: Evidence from 20 Million Online Recruitment Positions
CAI Weixing, WEI Qingfang, LIN Hangyu
School of Finance, Guangdong University of Finance & Economics;
School of Economics and Finance, Huaqiao University;
China School of Banking and Finance, University of International Business and Economics
下载:  PDF (553KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文基于2000万在线招聘岗位大数据,构建在线招聘需求指标,并使用北京大学数字普惠金融指数衡量数字金融发展,系统考察数字金融发展对在线招聘需求的影响。研究结果显示:(1)数字金融发展能够显著增加在线招聘需求;(2)这一影响的机制在于,一方面数字金融发展能够增加对数字技能相关岗位的在线招聘需求,从而验证“岗位创造效应”,另一方面数字金融发展还有助于推动新企业创建,为“创业带动就业效应”提供经验证据支持;(3)异质性结果表明,数字金融发展的劳动力需求效应在不同学历、经验和工资岗位层面普遍存在,这在岗位层面上证实了数字金融发展的普惠性;(4)数字金融发展促进在线招聘需求的效果,在银行网点密度低的地区更加显著,这表明数字金融在某种程度上对传统金融形成有力补充;(5)数字金融发展在应对突发公共卫生事件冲击中发挥积极作用,有效缓解突发冲击对在线招聘需求的负面影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡卫星
韦庆芳
林航宇
关键词:  数字金融  劳动力需求效应  在线招聘    
Summary:  Employment is essential for individuals' livelihoods and directly affects economic and social factors such as income, consumption, and production. In addition, it serves as a crucial metric for evaluating high-quality development and collective prosperity. Over the past decade, China has rapidly embraced digital finance, becoming a global leader in this area. This advancement has digitally transformed the impact of technological progress on the labor market and broadened access to financial services to a wider demographic, changing labor market dynamics by lowering entry barriers to traditional financial services. However, there is a significant gap in the literature regarding the impact of digital finance development on online recruitment demands.
The rapid growth of digital finance in China provides a good opportunity to study its impact on online recruitment demands. Theoretical considerations suggest that the development of digital finance has a dual effect on online recruitment demands. It may reduce demands for and lead to the elimination of certain positions (known as the “job substitution effect”), but it also has the potential to create new job requirements (the “job creation effect”) and to indirectly stimulate entrepreneurial activities (the “entrepreneurship-driven employment effect”), thereby increasing online recruitment demands. In this paper, we use a dataset of 20 million online job postings to create indicators for online recruitment demands and assess the development of digital finance using the Peking University Digital Inclusion Index of China. We systematically examine the impact of digital finance development on online recruitment demands. Our findings indicate a notably positive impact, suggesting that the development of digital finance facilitates both the “job creation effect” and the “entrepreneurship-driven employment effect.” In addition, heterogeneous results indicate that the labor demand effects of digital finance development are widely present across various educational backgrounds, experiences, and wage levels. This confirms the inclusiveness of digital finance development at the job level.
This study contributes to the literature in the following aspects. First, it highlights the considerably positive impact of digital finance development on online recruitment demands. Despite extensive scholarly attention to the economic aspects of digital finance development, focusing on macroeconomic growth, micro-level corporate financing behavior, and household entrepreneurship and consumption, there remains a notable gap in understanding its effects on online recruitment demands, a gap which our research bridges.
Second, we construct a large-scale database comprising 20 million online job postings, which exhibits excellent scalability. Using big data methodologies, we extract information from these postings as the foundational dataset for our study, which has gained prominence in recent academic research. In contrast to household surveys, our dataset not only has a more substantial sample size but also provides richer information. For instance, in testing the “job creation effect,” we use machine learning to identify digital positions based on the lexicon proposed by Chen and Srinivasan (2023). Given the advantages inherent in this dataset, we anticipate its broader application in the future.
We conduct additional tests to explore the online recruitment demand implications of digital finance development, enhancing our understanding of its interplay with traditional finance and its role in responding to challenges posed by external shocks. Our findings indicate that the labor demand effects of digital finance development are more pronounced in areas with lower (vs. higher) bank branch density, confirming a clear complementary relationship between digital finance and traditional finance. Furthermore, the development of digital finance helps mitigate the adverse effects of external shocks on online recruitment demands. These tests refine our insights into the dynamics of digital finance development.
This study has important policy implications. First, it is crucial to promote the healthy development of digital finance. Second, efforts should focus on improving the digital skills of the workforce to meet the growing demand for talent in the evolving digital finance landscape. Concurrently, greater support should be provided for entrepreneurial activities to maximize the employment effects of digital finance development. Third, initiatives should aim to encourage the development of digital finance in regions with weak traditional finance.
Keywords:  Digital Finance    Labor Demand Effects    Online Recruitment
JEL分类号:  G21   J23  
基金资助: * 作者感谢国家社会科学基金重点项目(19AJY027)、广东省普通高校创新团队项目(2018WCXTD001)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  韦庆芳,博士研究生,华侨大学经济与金融学院,E-mail:weiqf1995@126.com.   
作者简介:  蔡卫星,经济学博士,教授,广东财经大学金融学院/广东财经大学国家金融学研究中心,E-mail:peterxcai@126.com.
林航宇,博士研究生,对外经济贸易大学中国金融学院,E-mail:1451611603@qq.com.
引用本文:    
蔡卫星, 韦庆芳, 林航宇. 数字金融发展的劳动力需求效应 ——来自2000万在线招聘岗位的经验证据[J]. 金融研究, 2023, 521(10): 28-46.
CAI Weixing, WEI Qingfang, LIN Hangyu. The Effects of Digital Finance on Labor Demand: Evidence from 20 Million Online Recruitment Positions. Journal of Financial Research, 2023, 521(10): 28-46.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V521/I10/28
[1]蔡卫星,2019,《银行业市场结构对企业生产率的影响——来自工业企业的经验证据》,《金融研究》第4期,第39~55页。
[2]方芳和蔡卫星,2016,《银行业竞争与企业成长:来自工业企业的经验证据》,《管理世界》第7期,第63~75页。
[3]郭峰、王靖一、王芳、孔涛、张勋和程志云,2020,《测度中国数字普惠金融发展:指数编制与空间特征》,《经济学(季刊)》第4期,第1401~1418页。
[4]黄祖辉、宋文豪和叶春辉,2023,《数字普惠金融对新型农业经营主体创立的影响与机理——来自中国1845个县域的经验证据》,《金融研究》第4期,第92~110页。
[5]黄益平和黄卓,2018,《中国的数字金融发展:现在与未来》,《经济学(季刊)》第4期,第1489~1502页。
[6]江飞涛和蔡卫星,2020,《新冠肺炎疫情防控中城市交通管制效果的经验评估》,《产业经济评论》第4期,第59~74页。
[7]莫怡青和李力行,2022,《零工经济对创业的影响——以外卖平台的兴起为例》,《管理世界》第2期,第31~45+3页。
[8]宋晓玲,2017,《数字普惠金融缩小城乡收入差距的实证检验》,《财经科学》第6期,第14~25页。
[9]孙鲲鹏、罗婷和肖星,2021,《人才政策、研发人员招聘与企业创新》,《经济研究》第8期,第143~159页。
[10]王馨,2015,《互联网金融助解长尾小微企业融资难问题研究》,《金融研究》第9期,第128~139页。
[11]王靖一、郭峰和李勇国,2020,《新冠肺炎疫情对线下微型商户短期冲击的定量估算——兼论数字金融缓解冲击的价值》,北京大学数字金融研究中心工作论文。
[12]谢绚丽、沈艳、张皓星和郭峰,2018,《数字金融能促进创业吗?——来自中国的证据》,《经济学(季刊)》第4期,第1557~1580页。
[13]张勋、万广华、张佳佳和何宗樾,2019,《数字经济、普惠金融与包容性增长》,《经济研究》第8期,第71~86页。
[14]张勋、杨桐、汪晨和万广华,2020,《数字金融发展与居民消费增长:理论与中国实践》,《管理世界》第11期,第48~63页。
[15]Acemoglu, D. and P. Restrepo, 2018, “The Race between Man and Machine:Implications of Technology for Growth, Factor Shares and Employment”, American Economic Review, 108(6), pp.1488~1542.
[16]Acemoglu, D. and P. Restrepo, 2019, “Automation and New Tasks: How Technology Displaces and Reinstates Labor”, Journal of Economic Perspectives, 33(2), pp.3~30.
[17]Agrawal, A., J. S. Gans and A. Goldfarb, 2019, “Artificial Intelligence:The Ambiguous Labor Market Impact of Automating Prediction”, Journal of Economic Perspectives, 33(2), pp.31~50.
[18]Autor, D. H. and D. Dorn, 2013, “The Growth of Low-skill Service Jobs and the Polarization of the US Labor Market”, American Economic Review, 103(5), pp.1553~1597.
[19]Baumol,W. J., 1968, “Entrepreneurship in Economic Theory”, American Economic Review, 58(2), pp.64~71.
[20]Chen, W. and S. Srinivasan, 2023, “Going Digital: Implications for Firm Value and Performance”, Review of Accounting Studies28(1), pp.1~47.
[21]Frey, C. B. and M. A. Osborne, 2017, “The Future of Employment: How Susceptible Are Jobs to Computerisation?”, Technological Forecasting and Social Change, 114, pp.254~280.
[22]Grossman, J. and M. Tarazi, 2014, “Serving Smallholder Farmers: Recent Developments in Digital Finance”, CGAP Working Paper,No.94.
[23]Goos, M. and A. Manning, 2007, “Lousy and Lovely Jobs: The Rising Polarization of Work in Britain”, Review of Economics & Statistics, 89(1) , pp.118~133.
[24]Graetz, G. and G. Michaels, 2018, “Robots at Work”, Review of Economics and Statistics, 100(5), pp.753~768.
[25]Hau, H., Y. Huang, H. Shan and Z. Sheng, 2019, “How Fintech Enters China's Credit Market”,AEA Papers and Proceedings,109,pp.60~64.
[26]Kapoor, A., 2013, “Financial Inclusion and the Future of the Indian Economy”, Futures, 56,pp.35~42.
[27]King, R. G. and R. Levine, 1993, “Finance and Growth: Schumpeter Might be Right”, The Quarterly Journal of Economics, 108(3), pp.717~737.
[28]Korinek, A. and J. E. Stiglitz, 2018, “Artificial Intelligence and Its Implications for Income Distribution and Unemployment”,The Economcs of Artificial Intellisence:An agenda.University of chiago Press,pp.349~390.
[29]Samila, S. and O. Sorenson, 2011, “Venture Capital, Entrepreneurship, and Economic Growth”, Review of Economics & Statistics, 93(1), pp.338~349.
[1] 田鸽, 黄海, 张勋. 数字金融与创业高质量发展:来自中国的证据[J]. 金融研究, 2023, 513(3): 74-92.
[2] 张海洋, 胡英琦, 陆利平, 蔡卫星. 数字时代的银行业变迁——网点布局与行业结构[J]. 金融研究, 2022, 507(9): 75-92.
[3] 赵亚雄, 王修华. 数字金融、家庭相对收入及脆弱性——兼论多维“鸿沟”的影响[J]. 金融研究, 2022, 508(10): 77-97.
[4] 聂秀华, 江萍, 郑晓佳, 吴青. 数字金融与区域技术创新水平研究[J]. 金融研究, 2021, 489(3): 132-150.
[5] 王修华, 赵亚雄. 数字金融发展是否存在马太效应?——贫困户与非贫困户的经验比较[J]. 金融研究, 2020, 481(7): 114-133.
[1] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[2] 康书隆, 余海跃, 刘越飞. 住房公积金、购房信贷与家庭消费——基于中国家庭追踪调查数据的实证研究[J]. 金融研究, 2017, 446(8): 67 -82 .
[3] 纪志宏, 曹媛媛. 信用风险溢价还是市场流动性溢价:基于中国信用债定价的实证研究[J]. 金融研究, 2017, 440(2): 1 -10 .
[4] 张程, 范立夫. 大宗商品价格影响与货币政策权衡——基于石油的金融属性视角[J]. 金融研究, 2017, 441(3): 72 -85 .
[5] 边文龙, 沈艳, 沈明高. 银行业竞争度、政策激励与中小企业贷款——来自14省90县金融机构的证据[J]. 金融研究, 2017, 439(1): 114 -129 .
[6] 王雄元, 高开娟. 客户集中度与公司债二级市场信用利差[J]. 金融研究, 2017, 439(1): 130 -144 .
[7] 刘威, 黄晓琪, 郭小波. 金融异质性、金融调整渠道与中国外部失衡短期波动——基于G20国家数据的门限效应分析[J]. 金融研究, 2017, 445(7): 29 -44 .
[8] 刘海明, 曹廷求. 信贷供给周期对企业投资效率的影响研究——兼论宏观经济不确定条件下的异质性[J]. 金融研究, 2017, 450(12): 80 -94 .
[9] 王永钦, 高鑫, 袁志刚, 杜巨澜. 金融发展、资产泡沫与实体经济: 一个文献综述[J]. 金融研究, 2016, 431(5): 191 -206 .
[10] 施炳展, 张雅睿. 人民币双边事实汇率制度与中国出口增长[J]. 金融研究, 2016, 434(8): 1 -7 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1