Please wait a minute...
金融研究  2023, Vol. 516 Issue (6): 20-37    
  本期目录 | 过刊浏览 | 高级检索 |
金融网络视角下的银行间市场基准利率体系与货币政策冲击传导
钟山, 林木材, 洪智武
厦门大学王亚南经济研究院,福建厦门 361005;
华侨大学统计学院,福建厦门 361021;
中国政法大学商学院,北京 102249
Benchmark Interest Rates in the Interbank Market and Transmission of Monetary Policy Shocks from a Financial Network Perspective
ZHONG Shan, LIN Mucai, HONG Zhiwu
Wang Yanan Institute for Studies in Economics, Xiamen University;
School of Statistics, Huaqiao University;
Business School, China University of Political Science and Law
下载:  PDF (1593KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 中国货币政策传导依赖金融市场的基准利率体系,探讨货币政策在不同利率间的传导,对于货币政策分析具有重要意义。本文在货币政策冲击传导分析中引入金融网络模型,为其提供了结构性分析视角。首先,本文将DY溢出网络的信息溢出作结构性分解,由此所构建的信息溢出网络可刻画货币政策冲击在不同利率间的传导。其次,本文在实证中构建了由银行间市场基准利率所组成的时变DY溢出网络,并探讨了货币政策冲击对该网络的影响。实证结果表明,1天质押式回购利率处于总信息溢出的核心位置,信息的净溢出由货币市场指向国债市场。货币政策冲击显著降低了1天质押式回购利率的信息净溢出,并且货币政策冲击的信息由国债市场向货币市场溢出。机制分析表明,国债收益率中的预期收益率提高了其对货币政策冲击信息的溢出能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟山
林木材
洪智武
关键词:  金融网络  银行间市场基准利率  货币政策冲击    
Summary:  In August 2020, the People's Bank of China released a white paper entitled “Participating in International Benchmark Interest Rate Reform and Improving China's Benchmark Interest Rate System”. This highlights that China's money, bond, credit and derivatives markets have each developed their own benchmark interest rates with considerable credibility, authority and market recognition. Thus, monetary policy shocks in China are transmitted to the financial market through the benchmark interest rate system. Any comprehensive evaluation of China's monetary policy transmission therefore requires a structural perspective to assess the transmission of shocks between benchmark interest rates.
In this study, we incorporate a network perspective into our macro-financial analysis by constructing a structural shock information spillover network. We conduct an empirical analysis of the impact of monetary policy shocks on the interbank benchmark interest rate network. The empirical results reveal the structural characteristics and mechanisms of monetary policy transmission. Our study makes three main contributions to the literature.
In terms of our theoretical contribution, we analyze the formation mechanism of the information spillover network constructed by Diebold and Yilmaz (2012, 2014), hereinafter referred to as the DY spillover network. The information spillover between network nodes reflects two types of correlation: the synchronous correlation between nodes stemming from the effect of common shocks and the dynamic correlation between nodes caused by a “contagion effect”. The total information spillover can be attributed to different common shocks, which enables us to construct an information spillover network of structural shocks that have the same properties as common shocks. The transmission of monetary policy shocks between interest rates can be regarded as the spillover of monetary policy shock information between nodes.
Empirically, we explore the impact of monetary policy shocks on the spillover of the interbank market benchmark interest rate network and conduct a structural analysis of monetary policy transmission. We select the pledged repo rate, interbank lending rate and government bond yield in the interbank market as benchmark interest rates. We then regard these interest rates as nodes and construct a time-varying DY spillover network through the TVP-VAR model, to identify the core nodes of the interest rate network. The empirical results show that the one-day pledged repo rate is the core node of the interest rate network and typically has the largest net information spillover. In terms of inter-market spillover, the money market shows a net information spillover to the government bond market. After identifying monetary policy shocks using heteroscedasticity assumptions, we further explore the impact of these shocks on information spillover between interest rates through regression analysis. The regression results show that the direction of the monetary policy shock spillover is opposite to the direction of the total information spillover: monetary policy shocks significantly reduce the net information spillover of one-day pledged repo rates and monetary policy shock information spills over from the government bond market to the money market.
Finally, we analyze the mechanism of the monetary policy shock spillover pattern identified in the empirical analysis. As government bond yields are more sensitive to monetary policy shocks, shocks identified from government bond yields have stronger predictive power for interest rates than those identified from the money market. China's monetary policy practice has not yet anchored short-term interest rates, and the monetary policy tools examined in this paper have a lag effect on short-term market interest rates. Government bond yields can fully reflect monetary policy shocks through expected effects, while short-term interest rates are more affected by funding liquidity shocks and have weaker transmission capacity for monetary policy shock information. These mechanisms are all supported by empirical evidence.
Our study therefore contributes to a better understanding of the DY spillover network and extends macro-finance research in terms of structural analysis. Our findings reveal the structural characteristics of China's current monetary policy transmission and provide important references for the development of benchmark interest rates during China's monetary policy transformation.
Keywords:  Financial network    Benchmark interest rates in the interbank market    Transmission of monetary policy shocks
JEL分类号:  E43   E52   C58  
基金资助: * 本文感谢国家自然科学基金青年项目(72103068,72203237)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  林木材,经济学博士,副教授,华侨大学统计学院,E-mail:linmucai@hqu.edu.cn.   
作者简介:  钟 山,博士研究生,厦门大学王亚南经济研究院,E-mail:flyingluc@163.com.洪智武,经济学博士,讲师,中国政法大学商学院,E-mail:CU212049@cupl.edu.cn.
引用本文:    
钟山, 林木材, 洪智武. 金融网络视角下的银行间市场基准利率体系与货币政策冲击传导[J]. 金融研究, 2023, 516(6): 20-37.
ZHONG Shan, LIN Mucai, HONG Zhiwu. Benchmark Interest Rates in the Interbank Market and Transmission of Monetary Policy Shocks from a Financial Network Perspective. Journal of Financial Research, 2023, 516(6): 20-37.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V516/I6/20
[1] 方意和方明,2012,《中国货币市场基准利率的确立及其动态关系研究》,《金融研究》第7期,第84~97页。
[2] 宫晓莉和熊熊,2020,《波动溢出网络视角的金融风险传染研究》,《金融研究》第5期,第39~58页。
[3] 宫晓莉、熊熊和张维,2020,《我国金融机构系统性风险度量与外溢效应研究》,《管理世界》第8期,第65~83页。
[4] 郭晔、黄振和王蕴,2016,《未预期货币政策与与企业债券信用利差——基于固浮利差分解的研究》,《金融研究》第6期,第67~80页。
[5] 郭豫媚、戴赜和彭俞超,2018,《中国货币政策利率传导效率研究:2008—2017》,《金融研究》第12期,第37~54页。
[6] 刘冲、庞元晨和刘莉亚,2022,《结构性货币政策、金融监管与利率传导效率——来自中国债券市场的证据》,《经济研究》第1期,第122~136页。
[7] 林木材和牛霖琳,2020,《基于高频收益率曲线的中国货币政策传导分析》,《经济研究》第2期,第101~116页。
[8] 梁琪、李政和郝项超,2015,《中国股票市场国际化研究:基于信息溢出的视角》,《经济研究》第4期,第150~164页。
[9] 梁琪、张孝岩和过新伟,2010,《中国金融市场基准利率的培育——基于构建完整基准收益率曲线的实证分析》,《金融研究》第9期,第87~105页。
[10] 李政、梁琪和涂晓枫,2016,《我国上市金融机构关联性研究——基于网络分析法》,《金融研究》第8期,第95~110页。
[11] 潘彬和金雯雯,2017,《货币政策对民间借贷利率的作用机制与实施效果》,《经济研究》第8期,第78~93页。
[12] 彭红枫和鲁维洁,2010,《中国金融市场基准利率的选择研究》,《管理世界》第11期,第166~167页。
[13] 强静、侯鑫和范龙振,2018,《基准利率、预期通胀率和市场利率期限结构的形成机制》,《经济研究》第4期,第92~107页。
[14] 易纲,2021,《中国的利率体系与利率市场化改革》,《金融研究》第9期,第1~11页。
[15] 姚余栋和谭海鸣,2011,《央票利率可以作为货币政策的综合性指标》,《经济研究》增2期,第63~74页。
[16] 杨子晖和周颖刚,2018,《全球系统性金融风险溢出与外部冲击》,《中国社会科学》第12期,第60~90+200~201页。
[17] Altavilla, C., D. Giannone and M. Modugno, 2017, “Low Frequency Effects of Macroeconomic News on Government Bond Yields,” Journal of Monetary Economics, 92, pp. 31~46.
[18] Anufriev, M. and V. Panchenko, 2015, “Connecting the Dots: Econometric Methods for Uncovering Networks with an Application to the Australian Financial Institution,” Journal of Banking & Finance, 61(Supplement 2), pp. S241~S255.
[19] Baruník, J., E. Kočenda and L. Vácha, 2017, “Asymmetric Volatility Connectedness on the Forex Market,” Journal of International Money and Finance, 77, pp. 39~56.
[20] Billio, M., M. Getmansky, A. M. Lo and L. Pelizzon, 2012, “Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors,” Journal of Financial Economics, 104(3), pp. 535~559.
[21] Bu, C., J. Rogers and W. Wu, 2021, “A Unified Measure of Fed Monetary Policy Shocks,” Journal of Monetary Economics, 118, pp. 331~349.
[22] Diebold, F. X. and K. Yilmaz, 2012, “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers,” International Journal of Forecasting, 28(1), pp. 57~66.
[23] Diebold, F. X. and K. Yilmaz, 2014, “On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms,” Journal of Econometrics, 182(1), pp. 119~134.
[24] Geraci, M. V. and J.Y. Gnabo, 2018, “Measuring Interconnectedness Between Financial Institutions with Bayesian Time-Varying Vector,” Journal of Financial and Quantitative Analysis, 53(3), pp. 1371~1390.
[25] Härdle, W. K., W. Wang and L. Yu, 2016, “TENET: Tail-Event Driven NETwork Risk,” Journal of Econometrics, 192(2), pp. 499~513.
[26] Hong, Z., L. Niu and G. Zeng, 2019, “US and Chinese Yield Curve Responses to RMB Exchange Rate Policy Shocks: An Analysis with the Arbitrage-Free Nelson-Siegel Term Structure Model,” China Finance Review International, 9(3), pp. 360~385.
[27] Korobilis, D. and K. Yilmaz, 2018, “Measuring Dynamic Connectedness with Large Bayesian VAR Models,” Koc University-TUSIAD Economic Research Forum Working Papers 1802.
[28] Nakajima, J., 2011, “Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications,” Monetary and Economic Studies, 29, pp. 107~142.
[29] Pesaran, M. H. and Y. Shin, 1998, “Generalized Impulse Response Analysis in Linear Multivariate Models,” Economics Letters, 58(1), pp. 17~29.
[30] Rigobon, R., 2003, “Identification through Heteroskedasticity,” Review of Economics and Statistics, 85(4), pp. 777~792.
[31] Wright, J. H., 2012, “What does Monetary Policy Do to Long-Term Interest Rates at the Zero Lower Bound,” Economic Journal, 122(564), pp. F447~F466.
[32] Yang, Z. and Y. Zhou, 2017, “Quantitative Easing and Volatility Spillovers Across Countries and Asset Classes”, Management Science, 63(2), pp. 333~354.
[1] 张成思, 唐火青, 陈贞竹. 货币政策冲击对实体企业投资选择影响的“宿醉效应”[J]. 金融研究, 2022, 507(9): 1-19.
[1] 步丹璐, 狄灵瑜. 治理环境、股权投资与政府补助[J]. 金融研究, 2017, 448(10): 193 -206 .
[2] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[3] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[4] 况伟大, 王琪琳. 房价波动、房贷规模与银行资本充足率[J]. 金融研究, 2017, 449(11): 34 -48 .
[5] 祝树金, 赵玉龙. 资源错配与企业的出口行为——基于中国工业企业数据的经验研究[J]. 金融研究, 2017, 449(11): 49 -64 .
[6] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[7] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017, 449(11): 81 -95 .
[8] 王丽艳, 马光荣. 帆随风动、人随财走?——财政转移支付对人口流动的影响[J]. 金融研究, 2017, 448(10): 18 -34 .
[9] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[10] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1