Please wait a minute...
金融研究  2023, Vol. 515 Issue (5): 152-169    
  本期目录 | 过刊浏览 | 高级检索 |
新闻文本大数据与消费增速实时预测——基于叙事经济学的视角
张一帆, 林建浩, 樊嘉诚
中山大学商学院,广东 深圳 518107;
中山大学岭南学院,广东 广州 510275
News Data and Real-Time Consumption Growth Projections: A View from Narrative Economics
ZHANG Yifan, LIN Jianhao, FAN Jiacheng
Business School, Sun Yat-sen University;
Lingnan College, Sun Yat-sen University
下载:  PDF (1028KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文利用媒体报道的文本大数据构建消费新闻情绪指数(CNSI),挖掘其对消费增速预测的独特价值,拓展了叙事经济学在宏观预测中的应用。本文研究发现:第一,随着中国经济进入新常态,消费增速与情绪指数出现趋势性背离,是未来宏观经济可能面临的新问题。本文使用小波分析对消费增速进行分解,发现CNSI对消费增速的短期波动具有显著的预测能力。第二,利用新闻文本数据的高频优势构造周度CNSI,发现其能迅速捕捉疫情等重大冲击的影响并实现精度更高的实时预测。第三,进一步区分媒体叙事的不同维度,与传播已有事件的现状描述文本相比,描述未来的前瞻性文本更能预测未来消费增速;与包含极端情绪的煽动性报道相比,客观中性的非煽动性报道预测能力更强。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张一帆
林建浩
樊嘉诚
关键词:  叙事经济学  文本分析  经济预测  消费增速    
Summary:  At the beginning of 2020, the COVID-19 pandemic had a massive impact on the Chinese economy, leading to debates about whether consumption would slow down after recovery from the pandemic. It is crucial to achieve real-time forecasting consumption growth, which is important for government policy implementation. Moreover, accurately predicting the changes in consumption growth can provide timely warnings about downward pressures on consumption, allowing sufficient time for stimulus policy plans. Consumers' expectations of future economic conditions, personal incomes, price levels, and macro policies, among other factors, affect their investment and consumption decisions. Narrative economics suggests that consumer expectations are largely guided by media narratives. Therefore, consumption-related media coverage can be used to reflect changes in consumer expectations and predict future consumption activities.
This article constructs a consumption-related news sentiment index (CNSI) based on close to 600,000 news articles from five mainstream media outlets in China from 2007 to 2020. We evaluate the performance of the news-based CNSI and the survey-based consumer confidence index (CCI) in real-time consumption projections. We study the time-series characteristics of consumption growth and find an obvious trend disconnection between consumption growth and consumer sentiment in China, especially after the advent of the “new normal” period, with a decline in consumption growth and an increase in consumer sentiment. This trend disconnection is an important feature that is ignored in the literature. By using wavelet decomposition, or detrending processing, we find a positive and significant correlation between the CNSI and the short-term cyclical component of consumption growth, whereas the CCI does not identify this correlation. Correspondingly, our CNSI can considerably improve the out-of-sample forecasting of short-term consumption, and it can be applied to nowcasting and mixed-frequency forecasting. We further explore the content structures of news texts and find that the “current status” content of news performs better for real-time nowcasting, whereas the “foresight analysis” content is more effective in predicting future consumption growth. Furthermore, more objective and emotionally neutral (non-seditious) media texts perform better in nowcasting and forecasting. Compared with the Internet-based CCI, the construction of CNSI is simpler and more transparent, which results in outstanding advantages in consumption projections.
This article makes the following contributions to the literature. First, to the best of our knowledge, this study is the first to focus on the trend disconnection between consumption growth and consumer sentiment in China. We address this issue by identifying the long-term trend and short-term cyclical components of consumption growth through cycle decomposition methods, and find that their performance differs. This indicates that economic forecasting studies cannot ignore the cyclical changes in China's economy, and future research must consider cycle decomposition.
Second, this article combines consumption projections with high-frequency and real-time textual data. Compared with the official CCI, the weekly news-based CNSI is timelier and more responsive to economic changes. The mix-frequency prediction results indicate that high-frequency data can further improve the accuracy of forecasting consumption growth, which can be an appropriate direction for further research.
Third, this article examines multi-dimensional text features, such as “current status vs. foresight analysis”, and “seditious vs. non-seditious” features. This not only supports the theoretical conclusion that consumer confidence and expectations are driven by information on economic fundamentals but also provides a new perspective on the application of textual data in economic research.
Keywords:  Narrative Economic    Textual Analysis    Economic Projection    Consumption Growth
JEL分类号:  C82   E21   E27  
基金资助: * 本文研究得到国家社会科学基金重点项目(22AZD121)、国家社会科学基金重大项目(21ZDA036)、国家自然科学基金面上项目(72073148,72273156)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  林建浩,经济学博士,教授,中山大学岭南学院,E-mail:linjh3@mail.sysu.edu.cn.   
作者简介:  张一帆,经济学博士,助理教授,中山大学商学院,E-mail:zhangyf278@mail.sysu.edu.cn.
樊嘉诚,博士研究生,中山大学岭南学院,E-mail:fanjch7@mail2.sysu.edu.cn.
引用本文:    
张一帆, 林建浩, 樊嘉诚. 新闻文本大数据与消费增速实时预测——基于叙事经济学的视角[J]. 金融研究, 2023, 515(5): 152-169.
ZHANG Yifan, LIN Jianhao, FAN Jiacheng. News Data and Real-Time Consumption Growth Projections: A View from Narrative Economics. Journal of Financial Research, 2023, 515(5): 152-169.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2023/V515/I5/152
[1]洪永淼、刘俸奇和薛涧坡,2023,《政府与市场心理因素的经济影响及其测度》,《管理世界》第3期,第30~50页。
[2]姜富伟、孟令超和唐国豪,2021,《媒体文本情绪与股票回报预测》,《经济学(季刊)》第4期,第1323~1344页。
[3]林建浩、陈良源、罗子豪和张一帆,2021,《央行沟通有助于改善宏观经济预测吗?——基于文本数据的高维稀疏建模》,《经济研究》第3期,第48~64页。
[4]沈艳、陈赟和黄卓,2019,《文本大数据分析在经济学和金融学中的应用:一个文献综述》,《经济学(季刊)》第4期,第1153~1186页。
[5]孙毅、吕本富、陈航和薛添,2014,《基于网络搜索行为的消费者信心指数构建及应用研究》,《管理评论》第10期,第117~125页。
[6]王频和侯成琪,2017,《预期冲击、房价波动与经济波动》,《经济研究》第4期,第48~63页。
[7]王霞、司诺和宋涛,2021,《中国季度GDP的即时预测与混频分析》,《金融研究》第8期,第22~41页。
[8]杨天宇和朱光,2020,《劳动报酬上涨与中国国民储蓄率的演变趋势》,《金融研究》第11期,第21~39页。
[9]臧旭恒、陈斌开、尹志超、汪伟和易行健,2020,《“新冠肺炎疫情与消费”专家笔谈》,《消费经济》第3期,第3~12页。
[10]张晓晶,2022,《经济新常态》,《经济研究》第7期,第4~11页。
[11]郑挺国、靳炜、方匡南和林洪伟,2023,《媒体信息、预期冲击与经济周期波动——基于中文财经类报刊数据》,《数量经济技术经济研究》第2期,第202~220页。
[12]庄子罐、崔小勇、龚六堂和邹恒甫,2012,《预期与经济波动——预期冲击是驱动中国经济波动的主要力量吗?》,《经济研究》第6期,第46~59页。
[13]Aguiar-Conraria, L., and M. Joana Soares. 2011. “Business Cycle Synchronization and the Euro: A Wavelet Analysis”, Journal of Macroeconomics, 33(3):477~489.
[14]Armantier, O., G. Topa, W. Van der Klaauw, and B. Zafar. 2017. “An Overview of the Survey of Consumer Expectations”, Economic Policy Review, 23(2):51~72.
[15]Barsky, R.B., and E.R. Sims. 2012. “Information, Animal Spirits, and the Meaning of Innovations in Consumer Confidence”, American Economic Review, 102(4):1343~1377.
[16]Beaudry, P., and F. Portier. 2014. “News Driven Business Cycles: Insights and Challenges”, Journal of Economic Literature, 52(4):993~1074.
[17]Bok, B., D. Caratelli, D. Giannone, A.M. Sbordone, and A. Tambalotti. 2018. “Macroeconomic Nowcasting and Forecasting with Big Data”, Annual Review of Economics, 10(1):615~643.
[18]Bybee, L., B.T. Kelly, A. Manela, and D. Xiu. 2021. “Business News and Business Cycles”, National Bureau of Economic Research Working Paper Series, No. 29344.
[19]Carroll, C.D., J. Slacalek, and M. Sommer. 2011. “International Evidence on Sticky Consumption Growth”, Review of Economics and Statistics, 93(4):1135~1145.
[20]Chang, C., K. Chen, D.F. Waggoner, and T. Zha. 2016. “Trends and Cycles in China's Macroeconomy”, NBER Macroeconomics Annual, 30:1~84.
[21]Christiansen, C., J.N. Eriksen, and S.V. Møller. 2014. “Forecasting US Recessions: The Role of Sentiment”, Journal of Banking & Finance, 49:459~468.
[22]Crowley, P.M. 2007. “ A Guide to Wavelets for Economists”, Journal of Economic Surveys, 21(2): 207~267.
[23]Diebold, F.X., and R.S. Mariano. 1995. “Comparing Predictive Accuracy”, Journal of Business & Economic Statistics, 13(3):253~263.
[24]Dominitz, J., and C.F. Manski. 2004. “How Should We Measure Consumer Confidence?”, Journal of Economic Perspectives, 18(2):51~66.
[25]Hansen, P.R., and A. Timmermann. 2015. “Comment on: Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests”, Journal of Business & Economic Statistics, 33:17~21.
[26]Kelly, B., A. Manela, and A. Moreira. 2021. “Text Selection”, Journal of Business & Economic Statistics, 39(4): 1~21.
[27]Lahiri, K., G. Monokroussos, and Y. Zhao. 2015. “Forecasting Consumption: The Role of Consumer Confidence in Real Time with Many Predictors”, Journal of Applied Econometrics, 31(7):1254~1275.
[28] Larsen, V.H., and L.A. Thorsrud., 2019. “The Value of News for Economic Developments”, Journal of Econometrics, 210(1):203~218.
[29]Nimark, K.P., and S. Pitschner. 2019. “News Media and Delegated Information Choice”, Journal of Economic Theory, 181:160~196.
[30]Pennebaker, J.W., M.E. Francis, and R.J. Booth. 2001. “Linguistic Inquiry and Word Count: LIWC 2001”, Mahway: Lawrence Erlbaum Associates, 71.
[31]Shapiro, A.H., M.Sudhof, and D.J.Wilson. 2022. “Measuring News Sentiment”, Journal of Econometrics, 228(2):221~243.
[32]Shiller, R.J. 2019. Narrative、 Economics:“How Stories Go Viral and Drive Major Economic Events”, Princeton University Press.
[33]Song, M., and K. Shin. 2019. “Forecasting Economic Indicators Using a Consumer Sentiment Index: Survey-based versus Text-based Data”, Journal of Forecasting, 38(6):504~518.
[34]Thorsrud, L.A.. “Words are the New Numbers: A Newsy Coincident Index of the Business Cycle”, Journal of Business & Economic Statistics, 38:393~409.
[35]Wang, P., X. Li, X. Zhan, Y. Zhang, Y. Yan, and W. Meng. 2019. “Building Consumer Confidence Index based on Social Media Big Data”, Human Behavior and Emerging Technologies, 1(3):261~268.
[36]Yogo, M. 2008. “Measuring Business Cycles: A Wavelet Analysis of Economic Time Series”, Economics Letters, 100(2):208~212.
[1] 王勇, 窦斌, 宋培睿, 何昕晟. 管理层语调偏离会影响投资者决策吗?——基于我国上市公司文本与财务数据的经验研究[J]. 金融研究, 2023, 513(3): 169-187.
[2] 阮睿, 孙宇辰, 唐悦, 聂辉华. 资本市场开放能否提高企业信息披露质量?——基于“沪港通”和年报文本挖掘的分析[J]. 金融研究, 2021, 488(2): 188-206.
[3] 李哲, 王文翰. “多言寡行”的环境责任表现能否影响银行信贷获取——基于“言”和“行”双维度的文本分析[J]. 金融研究, 2021, 498(12): 116-132.
[4] 陈湘鹏, 周皓, 金涛, 王正位. 微观层面系统性金融风险指标的比较与适用性分析——基于中国金融系统的研究[J]. 金融研究, 2019, 467(5): 17-36.
[5] 张劲帆, 刚健华, 钱宗鑫, 张龄琰. 基于混频向量自回归模型的宏观经济预测[J]. 金融研究, 2018, 457(7): 34-48.
[6] 彭红枫, 林川. 言之有物:网络借贷中语言有用吗?——来自人人贷借款描述的经验证据[J]. 金融研究, 2018, 461(11): 133-153.
[7] 彭红枫, 赵海燕, 周洋. 借款陈述会影响借款成本和借款成功率吗?——基于网络借贷陈述的文本分析[J]. 金融研究, 2016, 430(4): 158-173.
[1] 王攀娜, 罗宏. 放松卖空管制对分析师预测行为的影响——来自中国准自然实验的证据[J]. 金融研究, 2017, 449(11): 191 -206 .
[2] 李丹, 庞晓波, 方红生. 财政空间与中国政府债务可持续性[J]. 金融研究, 2017, 448(10): 1 -17 .
[3] 李少昆. 美国货币政策是全球发展中经济体外汇储备影响因素吗?[J]. 金融研究, 2017, 448(10): 68 -82 .
[4] 王曦, 朱立挺, 王凯立. 我国货币政策是否关注资产价格?——基于马尔科夫区制转换BEKK多元GARCH模型[J]. 金融研究, 2017, 449(11): 1 -17 .
[5] 高铭, 江嘉骏, 陈佳, 刘玉珍. 谁说女子不如儿郎?——P2P投资行为与过度自信[J]. 金融研究, 2017, 449(11): 96 -111 .
[6] 王丽艳, 马光荣. 帆随风动、人随财走?——财政转移支付对人口流动的影响[J]. 金融研究, 2017, 448(10): 18 -34 .
[7] 刘勇政, 李岩. 中国的高速铁路建设与城市经济增长[J]. 金融研究, 2017, 449(11): 18 -33 .
[8] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[9] 张靖佳, 孙浦阳, 古芳. 欧洲量化宽松政策对中国企业出口影响——一个汇率网状溢出效应视角[J]. 金融研究, 2017, 447(9): 18 -34 .
[10] 姜军, 申丹琳, 江轩宇, 伊志宏. 债权人保护与企业创新[J]. 金融研究, 2017, 449(11): 128 -142 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1