Please wait a minute...
金融研究  2025, Vol. 543 Issue (9): 115-132    
  本期目录 | 过刊浏览 | 高级检索 |
工业智能化应用能提高企业信息披露质量吗?——来自制造业上市公司的证据
涂漫漫, 曹春方, 杜善重
华南师范大学经济与管理学院,广东广州 510006;
中山大学管理学院/现代会计与财务研究中心,广东广州 510275;
中山大学国际金融学院,广东珠海 519082
Can Industrial Intelligence Improve the Quality of Information Disclosure? Evidence from Manufacturing Listed Firms in China
TU Manman, CAO Chunfang, DU Shanzhong
School of Economics & Management, South China Normal University;
School of Business, Sun Yat-sen University;
International School of Business & Finance, Sun Yat-sen University
下载:  PDF (553KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文通过识别在建工程和研发开支中的工业智能化项目,探讨工业智能化应用对管理层业绩预告质量的影响及其作用机制。研究发现,工业智能化应用显著提高了管理层业绩预告的准确度和精确度。机制分析表明,工业智能化应用主要通过降低成本不确定性和收入波动性两条路径,改善管理层业绩预告质量。分组分析表明,当企业对劳动力的依赖程度更高、面临的市场竞争更激烈时,工业智能化对管理层业绩预告质量的改善作用更显著。本研究从理论上拓展了“新技术与会计”的研究范式,也为新发展阶段下培育新质生产力提供了微观层面的实证证据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
涂漫漫
曹春方
杜善重
关键词:  工业智能化  业绩预告质量  成本收入不确定性  劳动力市场摩擦    
Summary:  With the extensive adoption of industrial intelligence, technologies such as industrial robots are rapidly permeating various manufacturing processes and driving enterprises' strategic upgrading. According to data from the International Federation of Robotics, China continues to lead the global market, with 290,258 new industrial robots installed in 2022, accounting for more than 50% of the global total, and maintaining a compound annual growth rate of 32.55% over the past decade. Although previous studies indicate that industrial robots significantly enhance firms' productivity and flexibility, profoundly reshaping labor markets, its influence on corporate information disclosure quality and the underlying mechanisms remains underexplored. Given that high-quality information disclosure is essential for effective capital market functioning, investigating this issue has both theoretical and practical significance.
We measure the quality of management earnings forecasts from accuracy and precision, and construct firm-level industrial intelligence adoption based on the identification of related construction-in-progress and R&D expenditures projects from financial statement disclosures. Using a panel of manufacturing listed firms in Chinese A-share markets from 2011 to 2022, our results show that higher industrial intelligence adoption significantly improves the accuracy and precision of management earnings forecasts. This positive effect is primarily driven by reduced uncertainty in production costs associated with automated production, and it is more pronounced in regions with higher statutory minimum wages, greater high-skilled labor supply, and firms with higher inventory ratios. Additionally, industrial intelligence reduces income volatility through greater production controllability, especially in firms experiencing higher product demand volatility and more diversified product portfolios. Further heterogeneity analysis indicates that the positive impact of industrial intelligence adoption is significantly stronger in labor-intensive firms or those facing intense market competition.
This study contributes to the literature in three main ways. First, it extends the literature on the economic consequences of industrial intelligence adoption by focusing on the quality of management earnings forecasts. While prior research has primarily examined how robot exposure affects firms' labor decisions and cost management behaviors, this paper investigates how industrial intelligence adoption improves cost controllability and reduces income volatility, thereby enhancing disclosure quality. Second, it enriches the set of determinants of management earnings forecasts' quality. Existing studies have emphasized external factors such as litigation risk and internal governance mechanisms like internal controls, which mainly influence intentional bias in forecasts. In contrast, this study highlights that forecast quality also depends on the quantity and reliability of information available to managers. It shows that industrial intelligence provides managers with more precise and stable operational data, thereby improving the accuracy and precision of earnings forecasts. Third, the study introduces a replicable, fine-grained metric of firm-level industrial intelligence investment derived from financial statement disclosures, offering a new template for researchers interested in tracing technological adoption.
The policy implications of this study are as follows: Corporate managers should promote the deep integration of intelligent manufacturing and accounting information systems to ensure more timely and accurate access to information, thereby improving decision-making efficiency. Firms should adopt intelligent strategies tailored to their labor structures and competitive conditions. Labor-intensive firms should proactively adopt automation to mitigate labor-market uncertainties, while highly competitive firms can leverage intelligent systems to enhance forecasting and disclosure quality. For policymakers, targeted policy support should be implemented based on regional industrial characteristics and market conditions. On one hand, improving talent policies and support services can help ensure an adequate supply of skilled labor for “human-machine matching.” On the other hand, fiscal and financial incentives should be provided to firms in highly competitive sectors. Finally, when formulating labor policies such as minimum wage standards, governments should carefully consider the “human-machine substitution effect” driven by rising labor costs, in order to strike a balance between labor protection and industrial intelligence adoption, and to achieve coordinated progress in intelligent upgrading and employment stability.
Keywords:  Industrial Intelligence    Quality of Management Earnings Forecast    Uncertainty of Cost and Income    Labor Market Frictions
JEL分类号:  D21   M11   M41  
基金资助: *本文感谢国家自然科学基金面上项目(72072189)、广州基础与应用基础研究专题科技菁英“领航”项目(SL2024A04J01813)、2024年度“华南师范大学青年教师科研培育基金”项目(24SK28)、中山大学中央高校基本科研业务费专项资金(2025qntd62)的资助。感谢匿名审稿人的宝贵意见,文责自负。
通讯作者:  曹春方,管理学博士,教授,中山大学管理学院/现代会计与财务研究中心,E-mail:caochf@mail.sysu.edu.cn.   
作者简介:  涂漫漫,管理学博士,特聘副研究员,华南师范大学经济与管理学院,E-mail:tumm@m.scnu.edu.cn.
杜善重,管理学博士,助理教授,中山大学国际金融学院,E-mail:dushzh@mail.sysu.edu.cn.
引用本文:    
涂漫漫, 曹春方, 杜善重. 工业智能化应用能提高企业信息披露质量吗?——来自制造业上市公司的证据[J]. 金融研究, 2025, 543(9): 115-132.
TU Manman, CAO Chunfang, DU Shanzhong. Can Industrial Intelligence Improve the Quality of Information Disclosure? Evidence from Manufacturing Listed Firms in China. Journal of Financial Research, 2025, 543(9): 115-132.
链接本文:  
http://www.jryj.org.cn/CN/  或          http://www.jryj.org.cn/CN/Y2025/V543/I9/115
[1]步丹璐、文彩虹和Rajiv Banker,2016,《成本粘性和盈余稳健性的衡量》,《会计研究》第1期,第31~37页。
[2]方巧玲、余怒涛和徐慧,2024,《数字化转型的治理效应研究:会计信息质量视角》,《会计研究》第3期,第34~50页。
[3]何小钢、朱国悦和冯大威,2023,《工业机器人应用与劳动收入份额——来自中国工业企业的证据》,《中国工业经济》第4期,第1~19页。
[4]金献坤、徐莉萍和辛宇,2023,《企业数字化与业绩预告可靠性研究》,《会计研究》第2期,第52~64页。
[5]李常青、陈泽艺和黄玉清,2018,《内部控制与业绩快报质量》,《审计与经济研究》第1期,第21~33页。
[6]李晓溪、饶品贵和岳衡,2019,《年报问询函与管理层业绩预告》,《管理世界》第8期,第173~188页。
[7]鲁桐和党印,2014,《公司治理与技术创新:分行业比较》,《经济研究》第6期,第115~128页。
[8]陆瑶、施新政和刘璐瑶,2017,《劳动力保护与盈余管理——基于最低工资政策变动的实证分析》,《管理世界》第3期,第146~158页。
[9]彭博和贺晨,2022,《“互联网+销售”有助于改善管理层预测的质量吗——基于上市公司开设电商店铺的数据分析》,《会计研究》第6期,第75~89页。
[10]权小锋和李闯,2022,《智能制造与成本粘性——来自中国智能制造示范项目的准自然实验》,《经济研究》第4期,第68~84页。
[11]孙新波、钱雨、张明超和李金柱,2019,《大数据驱动企业供应链敏捷性的实现机理研究》,《管理世界》第9期,第133~151页。
[12]王丹、孙鲲鹏和高皓,2020,《社交媒体上“用嘴投票”对管理层自愿性业绩预告的影响》,《金融研究》第11期,第188~206页。
[13]王永钦和董雯,2020,《机器人的兴起如何影响中国劳动力市场?——来自制造业上市公司的证据》,《经济研究》第10期,第159~175页。
[14]温素彬、张金泉和焦然,2022,《智能制造、市场化程度与企业运营效率——基于A股制造业上市公司年报的文本分析》,《会计研究》第11期,第102~117页。
[15]吴义爽、盛亚和蔡宁,2016,《基于互联网+的大规模智能定制研究——青岛红领服饰与佛山维尚家具案例》,《中国工业经济》第4期,第127~143页。
[16]许辉,2019,《“世界工厂”模式的终结?——对“机器换人”的劳工社会学考察》,《社会发展研究》第1期,第143~162页。
[17]闫雪凌、朱博楷和马超,2020,《工业机器人使用与制造业就业:来自中国的证据》,《统计研究》第1期,第74~87页。
[18]尹洪英和李闯,2022,《智能制造赋能企业创新了吗?——基于中国智能制造试点项目的准自然试验》,《金融研究》第10期,第98~116页。
[19]袁航和朱承亮,2018,《国家高新区推动了中国产业结构转型升级吗》,《中国工业经济》第8期,第60~77页。
[20]赵家悦和卢锐,2024,《企业数字化转型的融资价值:基于数字化转型的新度量》,《会计研究》第6期,第55~69页。
[21]周广肃、李力行和孟岭生,2021,《智能化对中国劳动力市场的影响——基于就业广度和强度的分析》,《金融研究》第6期,第39~58页。
[22]Acemoglu, D. and P. Restrepo, 2020, “Robots and Jobs: Evidence from US Labor Markets”, Journal of Political Economy, 128(6), pp. 2188~2244.
[23]Ajinkya, B. and Gift, M., 1984, “Corporate Managers' Earnings Forecasts and Symmetrical Adjustments of Market Expectations”, Journal of Accounting Research, 22,pp.425~444.
[24]Anderson, M., R. Mashruwala, Y. Wang and R. Zhao, 2023, “Cost Uniqueness and Information Uncertainty”, Contemporary Accounting Research, 40(4), pp. 2226~2255.
[25]Banker, R. D. and L. Chen, 2006, “Predicting Earnings Using Model Based on Cost Variability and Cost Stickiness”, The Accounting Review, 81(2), pp. 285~307.
[26]Bates, T. W., F. Du and J. J. Wang, 2020, “Workplace Automation and Corporate Financial Policy”, Available at SSRN 3556935, pp. 1~70.
[27]Bena, J., H. Ortiz-Molina and E. Simintzi, 2022, “Shielding Firm Value: Employment Protection and Process Innovation”, Journal of Financial Economics, 146(2), pp. 637~664.
[28]Beyer, A., D. A. Cohen, T. Z. Lys and B. R. Walther, 2010, “The Financial Reporting Environment: Review of the Recent Literature”, Journal of Accounting and Economics, 50(2), pp. 296~343.
[29]Cheng, H., R. Jia, D. Li and H. Li, 2019, “The Rise of Robots in China”, Journal of Economic Perspectives, 33(2), pp. 71~88.
[30]Cheng, Q., T. Luo and H. Yue, 2013, “Managerial Incentives and Management Forecast Precision”, The Accounting Review, 88(5), pp. 1575~1602.
[31]Cheng, X., E. Lyandres, K. Zhou and T. Zhou, 2024, “Labor-Replacing Automation and Finance”, Management Science, pp. 1~59.
[32]Ciftci, M. and F. M. Salama, 2018, “Stickiness in Costs and Voluntary Disclosures: Evidence from Management Earnings Forecasts”, Journal of Management Accounting Research, 30(3), pp. 211~234.
[33]Gihleb, R., O. Giuntella, L. Stella and T. Wang, 2022, “Industrial Robots, Workers' Safety, and Health”, Labour Economics, 78, pp. 1~12.
[34]Healy, P. M. and K. G. Palepu, 2001, “Information Asymmetry, Corporate Disclosure, and the Capital Markets: A Review of the Empirical Disclosure Literature”, Journal of Accounting and Economics, 31(1), pp. 405~440.
[35]Kasznik, R. and B. Lev, 1995, “To Warn or Not to Warn: Management Disclosures in the Face of an Earnings Surprise”, The Accounting Review, pp. 113~134.
[36]Mann, K. and L. Püttmann, 2023, “Benign Effects of Automation: New Evidence from Patent Texts”, Review of Economics and Statistics, 105(3), pp. 562~579.
[37]Morikawa, M., 2019, “Uncertainty over Production Forecasts: An Empirical Analysis using Monthly Quantitative Survey Data”, Journal of Macroeconomics, 60, pp. 163~179.
[38]Qiu, J., C. Wan and Y. Wang, 2024, “Labor-Saving Innovations and Capital Structure”, Journal of Corporate Finance, 84, pp. 102510.
[39]Rogers, J. L. and P. C. Stocken, “Credibility of Management Forecasts”, The Accounting Review, 80(4), pp. 1233~1260.
[40]Simintzi, E., V. Vig and P. Volpin, 2015, “Labor Protection and Leverage”, Review of Financial Studies, 28(2), pp. 561~591.
[41]Toorajipour, R., V. Sohrabpour, A. Nazarpour, P. Oghazi and M. Fischl, 2021, “Artificial Intelligence in Supply Chain Management: A Systematic Literature Review”, Journal of Business Research, 122, pp. 502~517.
[42]Trajtenberg, M., 2018, “AI as the Next GPT: A Political-Economy Perspective”, National Bureau of Economic Research, pp. 1~11.
[43]Weiss, D., 2010, “Cost Behavior and Analysts' Earnings Forecasts”, The Accounting Review, 85(4), pp. 1441~1471.
[1] 赵静梅, 何宝露. 企业声誉与违规行为——基于数字经济视角的新考证[J]. 金融研究, 2025, 541(7): 76-94.
[2] 王修华, 彭德荣, 赵亚雄. 农信机构数字化转型能否促进双重目标兼顾?——基于省联社“大平台”模式视角的分析[J]. 金融研究, 2025, 538(4): 75-94.
[3] 余丽丽, 袁劲. 国内统一大市场建设、企业中间品异地采购份额提升与出口增长[J]. 金融研究, 2025, 538(4): 131-150.
[4] 孙洁, 李能飞, 赵梦茹. 互动式信息披露与企业信用评级——来自证券交易所互动平台的经验证据[J]. 金融研究, 2025, 537(3): 150-168.
[5] 邹静娴, 盖子琪, 申广军, 秦琛. 官方环保表态能否提升碳信息披露企业股价?——来自“双碳”目标提出的证据[J]. 金融研究, 2024, 534(12): 170-187.
[6] 魏浩, 封起扬帆. 进口竞争、创新风险与创新质量——基于单一企业和企业集团的再考察[J]. 金融研究, 2024, 533(11): 57-75.
[7] 叶永卫, 张静堃, 何凡. 常态化财会监督与企业资本市场定价[J]. 金融研究, 2024, 532(10): 169-187.
[8] 张一林, 蔡桢, 郁芸君. 信息不对称、碳数据质量与碳减排政策选择——兼论中国碳市场的高质量发展[J]. 金融研究, 2024, 531(9): 114-133.
[9] 尹恒, 张道远, 李辉. 中国劳动收入份额的演变趋势及基于制造业的驱动力探索[J]. 金融研究, 2024, 529(7): 152-169.
[10] 张美扬, 龙小宁. 专利丛林:科技创新中的绿荫还是荆棘?[J]. 金融研究, 2024, 527(5): 169-187.
[11] 吕勇斌, 李志生, 郭懿晨. 逆风前行:台风灾害与银行风险行为[J]. 金融研究, 2024, 523(1): 19-37.
[12] 袁劲, 余丽丽, 冯桂媚. 统一大市场建设与企业采购的区位选择[J]. 金融研究, 2024, 523(1): 187-206.
[13] 韩珣, 易祯, 乔佳雪. 中央银行沟通与非金融企业影子银行化[J]. 金融研究, 2023, 522(12): 20-37.
[14] 张杰, 郑姣姣. 公路基础设施如何重塑中国创新格局 ——基于地域异质性的微观证据[J]. 金融研究, 2023, 520(10): 66-84.
[15] 黄卓, 陶云清, 王帅. 社会信用环境改善降低了企业违规吗?——来自“中国社会信用体系建设”的证据[J]. 金融研究, 2023, 515(5): 96-114.
[1] 陈德球, 陈运森, 董志勇. 政策不确定性、市场竞争与资本配置[J]. 金融研究, 2017, 449(11): 65 -80 .
[2] 陈登科, 陈诗一. 中国财政支出乘数研究——基于金融摩擦与“超低利率”的视角[J]. 金融研究, 2017, 450(12): 17 -32 .
[3] 刘晓光, 杨连星. 双边政治关系、东道国制度环境与对外直接投资[J]. 金融研究, 2016, 438(12): 17 -31 .
[4] 江娇, 刘红忠, 曾剑平. 中国股票网络论坛的信息含量分析段[J]. 金融研究, 2017, 448(10): 178 -192 .
[5] 胡婷, 惠凯, 彭红枫. 异常波动停牌对股价波动性和流动性的影响研究——来自我国取消异常波动停牌的自然实验[J]. 金融研究, 2017, 447(9): 146 -160 .
[6] 张莉, 魏鹤翀, 欧德赟. 以地融资、地方债务与杠杆——地方融资平台的土地抵押分析[J]. 金融研究, 2019, 465(3): 92 -110 .
[7] 陈雨露. 当前全球中央银行研究的若干重点问题[J]. 金融研究, 2020, 476(2): 1 -14 .
[8] 郝大鹏, 王博, 李力. 美联储政策变化、国际资本流动与宏观经济波动[J]. 金融研究, 2020, 481(7): 38 -56 .
[9] 钟腾, 罗吉罡, 汪昌云. 地方政府人才引进政策促进了区域创新吗?——来自准自然实验的证据[J]. 金融研究, 2021, 491(5): 135 -152 .
[10] 俞剑, 郑文平, 程冬. 油价不确定性与企业投资[J]. 金融研究, 2016, 438(12): 32 -47 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《金融研究》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
京ICP备11029882号-1